
The Speedup of Nautilus, a new DSM System, Compared to

TreadMarks

Mario Donato Marino, Geraldo Lino de Campos�

Computing Engineering Department- Polytechnic School of University of of São Paulo

Abstract

Nautilus is a Multithreaded Distributed Shared Mem-
ory system based on scope consistency. The multi-
thread implementation disallows the use of SIGIO sig-
nals, which permits to minimize the context switch
of traditional processes, thus improving the speedups.
This paper shows the results of some benchmarks sub-
mitted to Nautilus. To have an accurate and correct
evaluation of Nautilus, it is compared with the main
important DSM system: TreadMarks. The bench-
marks evaluated in this study are: IS(from NAS), LU
(from SPLASH-II), Matmul (matrix multiplication)
and SOR (from Rice University).

1 Introduction

In the last years the research on Distributed Shared
Memory (DSM) [8] area has greatly di�used, with the
development of a large number of consistency models
and DSM systems. Carter[1] has classi�ed the DSM
evolution in two generations; the �rst one character-
ized by a big number of consistency messages and the
sequential consistency and the second one, by a big
reduction of the number of consistency messages and
by the adoption of a release consistency model.

Nowadays, it is believed that it is more appropri-
ated to use a new DSM classi�cation. It is possible
to extend the DSM evolution classi�cation suggested

�{mario, geraldo}@regulus.pcs.usp.br

by Carter[1], by introducing a third generation, rep-
resented by a new generation of DSM systems. By
adapting the de�nition from Carter[1], these three gen-
erations would be characterized by:

1. a big number of consistency messages and the
adoption of the sequential consistency model; one
can exemplify this with the Ivy [6];

2. a drastic reduction of the number of consistency
messages by the adoption of the release consis-
tency model, applying techniques to reduce the
false sharing; the examples are Munin [2] and
Quarks[7];

3. several e�cient consistency models and a minimal
number of messages to maintain the consistency;
the examples are TreadMarks[3], JIAJIA[4] and
Nautilus[5].

This paper introduces a DSM system that belongs to
the third generation: Nautilus.
Commonly, DSM comparisons base on simulations,

rather than confronting execution results, for example,
two di�erent DSM systems over a computer network.
So, the main goal is to evaluate Nautilus in an accu-
rate way, confronting it with other well known DSM
system, TreadMarks, executing them on the same net-
work, machines and operating systems; once they are
evaluated under the same conditions, the results of this
comparison would tend towards accurate comparisons.
There are a few previous papers [3, 7] comparing

di�erent DSM systems; however, most of them do not
evaluate DSM systems that belong to the third gen-
eration. One of the contributions of this paper is to

show the speedups of two di�erent third generation
DSM systems being executed on the same network of
computers, because comparing executions is more ac-
curate and more correct than comparing simulations of
the DSMs. In addition, as there are papers[3, 7] that
are using networks with di�erent operating systems,
to equalize the comparison, these two third genera-
tion DSM systems are compared on a PC computer
network with a free operating system. So, with an
ordinary hardware, operating system, and a DSM sys-
tem used throughout the academic community, it is
guaranteed that the network, the computers and the
operating system are the same to do a homogeneous
and fair comparison.
The comparison of Nautilus speedups with Tread-

Marks speedups is done by applying four di�erent
benchmarks: IS (from NAS), LU (from SPLASH-II),
Matmul (matrix multiplication) and SOR (from Rice
University). Also, di�erent input parameters size are
evaluated for each benchmark.
The environment of the comparison is a 8PC's net-

work interconnected by a fast-ethernet shared media.
The operating system used in each PC is Linux (2.x).

2 TreadMarks

2.1 TreadMarks features

TreadMarks [3] is one of the most important DSM sys-
tems. It was the �rst DSM to have speedup compa-
rable [3] to a shared memory machine for the SOR
benchmark (from Rice University): basically compar-
ing an ATM network of DEC machines with a SGI
shared memory machine.
The consistency model used by TreadMarks is lazy

release consistency[3], so the propagation of the modi-
�cations ocurred during a critical section is delayed un-
til the next acquire. By using multiple writer protocols
and the lazy release consistency model, the speedups
of TreadMarks are very known, making it one of the
most used DSM systems.
Let's summarize TreadMarks features:

� lazy release consistency and its variations [3],
minimizing the number of consistency messages
through the net;

� multiple writer techniques of Munin [1];

� primitives compatible with m4;

� IBM SP2, Sun Sparc, PCs;

� AIX, Solaris, free Unix (Linux 2.x);

� UDP protocols to minimize network protocols
overhead;

� �rst DSM to have a speedup compatible to a
shared memory machine[3].

The speedups of TreadMarks made it the main DSM
used by the scienti�c community as a reference of opti-
mal speedups. Thus, it makes sense to compare Nau-
tilus, a new DSM system, with TreadMarks, in order
to have an accurate evaluation of its performance.

The e�ciency of TreadMarks is mainly derived from
its lazy release consistency model. The major draw-
back of adopting this model is the high need of memory
to store the di�s1 all over the user's application execu-
tion. So, the size of the benchmarks used to evaluate
the speedups of the DSM system can be compromised
if there is not enough memory to execute the program
or if the operating system does swap. If it cannot use
enough size to run the benchmarks, the relation com-
putation versus synchronization becomes unfavorable
to use a DSM system.

3 Nautilus

Nautilus is the �rst multithreaded DSM system im-
plemented on top of a free unix platform that uses the
scope consistency model, because:

1. As of now, there are no multithreaded versions of
Treadmarks that can be executed on Linux 2.x,
but only a process-based version;

2. JIAJIA is a DSM system based on scope consis-
tency, but it is not implemented using threads.

1di�s: codi�cation of the modi�cation su�ered by a page
during a critical section

3. CVM[9] is a multithreaded DSM system, but uses
lazy release consistency and as of now, it does not
have a linux based version.

Let's summarize Nautilus features:

� scope consistency (possibly interpreted as a kind
of release consistency implementation) only send-
ing consistency messages to the owner of the pages
and invalidating pages in the acquire primitive ;

� multiple writer techniques;

� multithreaded DSM: threads to minimize the
switch context;

� no use of SIGIO signals(which notice the arrival
of a network message);

� minimization of di�s creation;

� primitives compatible with TreadMarks, Quarks
and JIAJIA;

� network of PCs;

� operating under Linux 2.x;

� UDP protocols.

The following considerations are valid to Nautilus:

1. it uses the scope consistency model, which is sim-
ple and e�cient[4];

2. if the scope consistency model will be interpreted
as a release consistency model, which it is be-
lieved until to be e�cient if some techniques will
be used[7];

3. the scope consistency model minimizes the mem-
ory use to maintain the consistency, instead of the
lazy release consistency model of TreadMarks;

It is believed that the scope consistency model is
a di�erent implementation of the release consistency
model that can produce good speedups if well applied.
So, it is possible to view Nautilus as a multi-home and

multithreaded DSM system based on release consis-
tency.
According to the scope consistency model, in Nau-

tilus the owner nodes of the pages do not need to send
the di�s to other nodes. Thus, in this model, di�s
of pages written by the owner are not created, what is
believed to be more e�cient than the lazy di� creation
of TreadMarks.
To improve the speedup of the applications submit-

ted, Nautilus uses:

� multithreaded implementation;

� di�s of pages that were written by the owner are
not created.

The multithreaded implementation of Nautilus per-
mits:

� minimization of context switch;

� no use of SIGIO signals;

Most DSM systems created as of now are implemented
on top of an Unix platform uses SIGIO signals to ac-
tivate a handler to take care of the arrival of mes-
sages which come from the network. Some examples
of DSMs that use the SIGIO signal are TreadMarks
and JIAJIA. The use of a multithreaded implementa-
tion permits to eliminate this overhead to take SIGIO
signals and activate its respective handler, in all ar-
rivals of messages. A thread is maintained sleeping
in a blocked reading of a socket, while it waits for
the arrival of the message. At its arrival, the thread
wakes up, read it and wakes up a decoder thread in
order to decode the header of the message. This de-
coder thread, which can be one or more threads, does
the respective action contained in the messages which
already have arrived, following the rpc model. Avoid-
ing the use of SIGIO signal and the handler system
call minimizes the overheads of the system. Nautilus
is the �rst third generation DSM system which has
eliminated completely the use of SIGIO signal in its
implementation.
On the same way that TreadMarks and JIAJIA do,

also Nautilus is worried about network protocols. So,
it also uses UDP protocol to minimize overheads.

Nautilus also cares about compatibility of primi-
tives. Its primitives are simple and totally compati-
ble with TreadMarks, JIAJIA and Quarks; as a result
there is not any need of code rearranjements. One ex-
ample of this compatibility is that IS and Matmul are
converted from JIAJIA and SOR from TreadMarks,
basically changing the name of the primitives.
As TreadMarks and JIAJIA do, Nautilus also is

worried about synchronization messages. To minimize
the number of messages, the synchronization messages
would carry consistency information, minimizing the
emission of the last ones.

4 Experimental Evaluation

4.1 Environment

The evaluation programs of this study are executed on
top of Nautilus on the following network of PCs:

� nodes: K6 - 233 MHz (AMD), 64 MB of memory
and 2 GB IDE disk;

� interconnection: a hub and fast ethernet cards
(100 Mbits/s).

In order to measure the speedups, the network above
was completely isolated from any other external net-
works.
The operating system used was Linux Red Hat 5.0.
Due to the limitation of the TreadMarks ver-

sion used:

� the applications were executed and the speedups
measured using Nautilus running on up to 8
nodes;

� bigger input sizes for the benchmarks Matmul
and SOR, were not possible to be evaluated.

It is possible with JIAJIA and Nautilus to choose dif-
ferent data distribution, and if the data access pattern
was known, it is possible to optimize the speedup.
Thus, in order to have a fair and homogeneous
comparison, in this paper the data distribution used
by all DSMs is the default provided by their primitives.

4.2 Evaluation programs

4.2.1 IS (from NAS)

�The IS problem from NAS Benchmarks ranks an un-
sorted sequence of keys using bucket sort. It is unique
in that �oating point operations are not involved. The
parallel version of IS divides up the keys among pro-
cessors. There is a shared bucket for all processors
and each processor has a private bucket. First, each
processor counts its keys in the private array of buck-
ets. These values in private buckets are summed up
into the shared bucket in a critical section which is
protected by a lock. Finally, each processor reads the
sum and ranks their keys.�[4] The parameters used in
the evaluation are NUMREPS=10, MAXKEY =
27 and the following N(number of keys): N=221 and
N=222.

4.2.2 LU (blocked LU: kernel from SPLASH
II)

�The LU kernel from SPLASH II factors a dense ma-
trix into the product of a lower triangular and upper
triangular matrix. The NxN matrix is divided into an
nxn array of bxb blocks (N = n*b) to exploit temporal
locality on submatrix elements. The matrix is factored
as an array of blocks, allowing blocks to be allocated
contiguously and entirely in the local memory of pro-
cessors that own them. �[4]

The Ns used in the evaluation are from N = 1024,
N=1408 and N = 1792, with step of 128.

4.2.3 Matmul

�Matmul is a simple matrix multiplication program
with inner product algorithm. All arrays are allocated
in shared memory. To achieve a good data locality,
the multiplier is transposed before multiplication. This
program requires no synchronization in the multipli-
cation process, so only three barriers are used at the
beginning and the end of the program.�[4] The ma-
trix sizes used in this experiment are 1024x1024,
1408x1408 and 1792x1792.

4.2.4 SOR (from Rice University)

�SOR from Rice University is solves partial di�erential
equations (Laplace equations) with a Over-Relaxation
method. There are two arrays, black and red array
allocated in shared memory. Each element from red
array is computed as an aritmethic mean from black
array and each element from black array is computed
as an aritmethic mean from red array. Communica-
tion occurs across the boundary rows on a barrier�.[4]
The size of red and black matrix used are 1024x1024,
1408x1408 and 1792x1792. The number of itera-
tions is 10 .

5 Result Analysis

5.1 IS

The �gures 1a and 1b show that both DSMs speedups
scale with the problem size. This is because the com-
putation to communication ratio of IS increases pro-
portionally with the problem size. �In IS, most time-
consuming computation is for each processor to count
its local part of keys. Summing the counting results up
in the critical section constitutes the communication
work �[4].

Looking at the �gures 1a and 1b, TreadMarks out-
performs Nautilus until 70%, specially for large num-
ber of nodes and for small N. With the increasement
of N, this speedup di�erence between both DSMs de-
creases. By increasing of N, the relation communica-
tion/computation decreases, so the speedups of both
DSMs become similar. In Nautilus, di�s have to be
sent to its home nodes before the release message is
sent to the lock, while in TreadMarks, di�s are kept
locally. As a result, when summing up values, Nau-
tilus takes mor time for each processor to enter and
leave the critical section. Also, the lock/unlock imple-
mentation of Nautilus is under development, does not
presenting good performance actually.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of Nodes

Speedup of IS - N = 2^21

"is.N21.TreadMarks"
"is.N21.Nautilus"

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of Nodes

Speedup of IS - N = 2^22

"is.N22.TreadMarks"
"is.N22.Nautilus"

�gures 1a, 1b: speedups of IS with N=221 and
N=222respectively

5.2 LU

LU is a kernel from SPLASH2 benchmarks that has
a rate computation/communication O(N3)/O(N2),
which increases with the problem size N. The nodes
frequently synchronize in each step of computation and
none of the phases are fully parallelized [4].
Looking at the �gures 2a, 2b and 2c, the speedups

of the three DSMs can be seen under di�erent input
sizes: N=1024, N=1408 and N=1792.

It is possible to notice from the �gures 2a, 2b and
2c, the speedups of both DSMs increase with the num-
ber of the nodes N. Also the speedups increase with
the increasement of N, except with the TreadMarks
speedup from N=1408 to N=1792, as it will be ex-
plained bellow.

With a number of nodes less than 3 nodes, for
N=1024 and N=1408, the speedups of both DSM sys-
tems are very similar. For more than 5 nodes, taking
advantage of its data distribution and minimizing the
di�s to be sent by using the lazy release consistency, for
N=1024 and for N=1408, TreadMarks is faster than
Nautilus. But, for N=1792, Nautilus is faster than
TreadMarks. For N=1792, the best speedups of Nau-
tilus occur because with this N value, due to lazy re-
lease consistency model adopted by TreadMarks, too
much di�s are stored, which is a feature of lazy re-
lease consistency model, causing the swapping of the
operating system.

In terms of percentage, for N=1024 and for 7 nodes,
TreadMarks outperforms Nautilus about 11.67%. For
N=1408, TreadMarks is up to 6.04%. For N=1792,
Nautilus outperforms TreadMarks about 3% .

Concluding, as it was said, for N=1024 and N=1408,
its data distribution and the lazy di�ng (minimizing
the transmission of di�s) used by TreadMarks, min-
imizes the number of messages through the net and
gives it better speedups than Nautilus. For N=1792,
due to the di�s stored by TreadMarks, which cause the
swapping of the operating system, Nautilus has the
best speedup, up to 3% faster than TreadMarks. Due
to the di�s stored, as it was said cause the swapping
of the operating system, also cause the speedup de-
creasement with the increasement of N (from N=1408
to N=1792).

So, the two release consistency models, lazy release
consistency model (adopted by TreadMarks) and the
scope consistency model (adopted by Nautilus) have a
good and similar behavior, providing good speedups.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7

S
p

e
e

d
u

p

Number of Nodes

Speedup of Lu - N = 1024

"lu.1024x1024.TreadMarks"
"lu.1024x1024.Nautilus"

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7

S
p

e
e

d
u

p

Number of Nodes

Speedup of LU - N = 1408

"lu.1408x1408.TreadMarks"
"lu.1408x1408.Nautilus"

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7

S
p

e
e

d
u

p

Number of Nodes

Speedup of LU - N = 1792

"lu.1792x1792.TreadMarks"
"lu.1792x1792.Nautilus"

�gures 2a, 2b and 2c: speedups of LU: N=1024,
N=1408 and N=1792

5.3 Matmul

Looking at the �gures 3a�3b and 3c, the speedups of
both DSMs can be seen under three di�erent input
size: N=1024, N=1408 and N=1792.

The �rst observation is that the speedups of both
DSMs increase with the number of nodes available for
a �xed N and, also the speedups increase according to
the increasement of N.

Still looking at �gures 3a, 3b and 3c, for N=1024,
Nautilus is between 10% to 26.56% faster than Tread-
Marks, the best reference of DSM area. For N=1408,
Nautilus outperforms TreadMarks about 20.16% .
And for N=1792, Nautilus is about 5.70 to 15.20%
faster than TreadMarks except with 5 nodes, when
TreadMarks outperforms Nautilus about 5.22%.

The best speedup of Nautilus happens due to its
data distribution (improving the data locality: factors
and result matrices are local giving a lower number
of page faults and also a lower cold start up time to
distribute shared data) and the lower overhead of the
scope consistency model. As there is no need to allo-
cate twins and to create di�s when a page is written in
its owner node, the avoidance of SIGIO signals and the
lower overhead of the threads used by Nautilus help
improving the overall perfomance.

5.4 SOR

The SOR from Rice University solves Laplace partial
equations. For a specy�ed number of iterations it has
two barriers each iteration and communication occurs
across boundary rows on a barrier. The communica-
tion does not increase with the number of processors
and the relation communication/computation reduces
as the size of problem increases.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Nodes

Speedup of Matmul - N = 1024

"mat.1024x1024.TreadMarks"
"mat.1024x1024.Nautilus"

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Nodes

Speedup of Matmul - N = 1408

"mat.1408x1408.TreadMarks"
"mat.1408x1408.Nautilus"

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Nodes

Speedup of Matmul - N = 1792

"mat.1792x1792.TreadMarks"
"mat.1792x1792.Nautilus"

�gures 3a, 3b and 3c: speedups of Matmul with sizes
1024x1024, 1408x1408 and 1792x1792

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Nodes

Speedup of Sor - N = 1024

"sor.1024x1024.TreadMarks"
"sor.1024x1024.Nautilus"

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Nodes

Speedup of Sor - N = 1408

"sor.1408x1408.TreadMarks"
"sor.1408x1408.Nautilus"

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Nodes

Speedup of Sor - N = 1792

"sor.1792x1792.TreadMarks"
"sor.1792x1792.Nautilus"

�gures 4a, 4b and 4c: speedups of SOR with sizes
1024x1024, 1408x1408 and 1792x1792

Looking at the �gures 4a, 4b and 4c, the speedups
of both DSMs can be seen under three di�erent input
sizes: N=1024, N=1408 and N=1792.
For both N=1024, N=1408 and N=1792, and for

2 to 8 nodes Nautilus outperforms TreadMarks. For
N=1024 and N=1408 the speedup di�erence reaches
up to 26.31%. For N=1408, the speedup di�erence is
up to 28.87%. And, for N=1792, the speedup di�er-
ence reaches up to 23.36%. The excellent speedup of
Nautilus happens because of the better data distribu-
tion adopted by itself improving the matrix data local-
ity (minimizing the number of messages through the
net) and giving a lower cold start up time to distribute
shared data. The lazy release protocol of TreadMarks
has additional overhead of looking up and maintain-
ing directory on a page fault. The avoidance of SIGIO
signals and the multithreading of Nautilus help im-
proving the SOR speedup.
Increasing N from 1024 to 1408 and from 1408 to

1792, the locality of the SOR improves, also improving
the speedup.
Justifying the best speedups of Nautilus: with a

low number of processors, the speedup di�erence be-
tween Nautilus and TreadMarks is higher, because of
the higher cost of lazy release consistency to maintain
the directory on a page fault. As it was said in Mat-
mul evaluation, it is needless to alloc twins and di�s
when a page is written in its owner (node), which de-
creases the overhead and also the data distribution,
multithreading and the avoidance of SIGIO signals,
improving the Nautilus speedups.

6 Conclusion

In this paper a new DSM systems classi�cation was
proposed based on their evolution, extending the clas-
si�cation initially proposed by Carter[1].
This paper introduces Nautilus, a new DSM sys-

tem, based on scope consistency, which brings the
ideas of multithreading and eliminating the SIGIO sig-
nals. Nautilus is the �rst third generation DSM sys-
tem which has eliminated completely the use of SIGIO
signal in its implementation. Also, this paper con-

fronts the speedups of TreadMarks and Nautilus, used
at present and compared on the same environment,
with the same computers, network and operating sys-
tem.

For the IS applicative, Nautilus has worse speedups
than TreadMarks because of the lock/unlock imple-
mentation and di�s sending (to the owner nodes) of
Nautilus. For the applicative LU, in terms of percent-
age, for N=1024 , TreadMarks outperforms Nautilus
about 11.67%, and for N=1408, TreadMarks outper-
forms Nautilus up to 6.04%, but for N=1792, Nautilus
outperforms TreadMarks about 3%. For the applica-
tive Matmul, Nautilus is between 10% to 20% faster
than TreadMarks for N=1024 and until 15.20% faster
for N=1792. Finally, for the applicative SOR, Nau-
tilus is until 20% faster than TreadMarks for N=1024,
28.87% for N=1408 and until 23.36% for N=1792.

As it was shown, Nautilus has good speedups, com-
parable to other more well-known DSM, TreadMarks,
surpassing its speedup depending on the application.
The use of multithreading and the avoidance of SIGIO
signals also help to improve Nautilus speedup. Other
data distribution and other lock/unlock implementa-
tion are undergoing study, in order to further improve
Nautilus speedup. The lazy release consistency model
(TreadMarks) and the scope consistency model (Nau-
tilus) presented good speedups for the benchmarks
evaluated in this paper.
Evaluate other problem size: one of the problems of

this study is the Demo version of TreadMarks that was
evaluated. This version, that has the same e�ciency
of a normal version of the software, has two problem
limitations: the size of the shared memory and a lim-
ited number of nodes. A full version of the software
to evaluate it better is being acquired.

References

[1] Carter J. B., Khandekar D., Kamb L., Dis-
tributed Shared Memory: Where We are and Where
we Should Headed, Computer Systems Laboratory,
University of Utah, 1995.

[2] Carter J. B., E�cient Distributed Shared Memory
Based on Multi-protocol Release Consistency, PHD

Thesis, Rice University, Houston, Texas, Septem-
ber, 1993.

[3] Keleher P. , Lazy Release Consistency for Dis-
tributed Shared Memory, PHD Thesis, University of
Rochester, Texas, Houston, January 1995.

[4] Hu W., Shi W., Tang Z., JIAJIA: An SVM System
Based on a new Cache Coherence Protocol, techni-
cal report no. 980001, Center of High Performance
Computing , Institute of Computing Technology,
Chinese Academy of Sciences, January, 1998.

[5] Marino M. D.; Campos G. L.; A Preliminary
Speedup Comparison between TreadMarks and
Nautilus DSM Systems, to be published in ER-
SADS99, Madeira Island, April, 1999.

[6] Li K, Shared Virtual Memory on Loosely Coupled
Multiprocessors, PHD Thesis�Yale University, 1986.

[7] Swanson M., Stoller L., Carter J., Making Dis-
tributed Shared Memory Simple, Yet E�cient, Com-
puter Systems Laboratory, University of Utah, tech-
nical report , 1998.

[8] Stum M. , Zhou S. , Algorithms Implementing
Distributed Shared Memory, University of Toronto,
IEEE Computer v.23 , n.5 , pp.54-64 , May 1990.

[9] Keleher P.�The Relative Importance of Concurrent
Writers and Weak Consistency Models, in Proced-
ings of the 16th International Conference on Dis-
tributed Computing Systems (ICDCS-16), pp. 91-
98, May, 1996.

