An Evaluation of the Speedup of Nautilus DSM System

Mario Donato Marino, Geraldo Lino de Campos and Liria Matsumoto Sato*

Computer Engineering Department- Polytechnic
School of University of Sio Paulo

Abstract

In this paper, a new DSM system called Nautilus is de-
scribed and evaluated with four different benchmarks
running on a 8 PC’s network. The evaluation exper-
iments show that Nautilus provides good speedups,
which are comparable to other DSMs like JTAJIA and
TreadMarks. The benchmarks evaluated in this study
are: LU (kernel from SPLASH-2) and SOR (from Rice
University).
key words: distributed shared memory, DSM

1 Introduction

The evolution and the decreasement of costs of inter-
connection technologies and PCs has become the net-
works of workstations (NOWSs) the most used as a par-
allel computer. Big projects such as Beowulf[11] can
be mentioned to exemplify this.

The Distributed Shared ~ Memory (DSM)
paradigm[8], which has been largely discussed
for the last 9 years, is an abstraction of shared mem-
ory which permits to view a network of workstations
as a shared memory parallel computer. By moving or
replicating data[8], shared memory uniform accesses
are done by the different nodes, implementing in this
way the DSM main aim. These movimentation and/or
replication of data, guarantee its consistency, allowing
programs done for phisically shared memory machines
to be easily ported and developed[1], since to develop
message passing programs is more difficult than to
develop shared memory programs.

In the last years the DSM area has great diffused,
with the development of a large number of consistency
models and DSM systems. Carter [1] has classified the
DSM evolution in two generations:

1) a big number of consistency messages and the
adoption of the sequential consistency model; one can
exemplify this with the Ivy [6];

*{mario,geraldo,liria}@regulus.pcs.usp.br ; Address: Avenida
Professor Luciano Gualberto 158, trav3, Cidade Universitaria,
Sao Paulo, Brazil, CEP: 05508-900

fpaper number: 302-207

2) a drastic reduction of the number of consistency
messages by the adoption of the release consistency
model, applying techniques to reduce the false shar-
ing; several examples can be exemplified: Munin|[2],
Quarks[7], TreadMarks[3], CVM][10], JIAJIA[4] and
Nautilus[5].

Commonly, DSM comparisons base on simulations,
rather than confronting execution results, for example,
two different DSM systems over a computer network.
Also, because to compare executions is more accurate
and more correct than to compare simulations of the
DSMs.

There are a few previous papers [3] [9] comparing
different DSM systems; however, most of then evaluate
DSM systems using networks with different operating
systems, and different interconnection systems.

The main goal of this paper is to present and to
evaluate a new DSM System called Nautilus in an ac-
curate way, confronting it with two of the most im-
portant DSM systems, which have largely been used
by several research groups in the scientific community:
TreadMarks and JTAJIA. This confront is done in a
same PC’s network, so with the machines and a free
operating system. Once they are evaluated under the
same conditions, the results of this comparison would
tend towards accurate, homogeneous and fair compar-
isons. In addition, TreadMarks and JIAJIA speedups
are compared.

The comparison of Nautilus speedups with Tread-
Marks and JTAJTA speedups is done by applying two
different benchmarks: LU (kernel from SPLASH-2)[15]
and SOR (from Rice University). The environment of
the comparison is a 8PC’s network interconnected by
a fast-ethernet shared media. The operating system
used in each PC is Linux (2.x).

2 Nautilus DSM

The first motivation in working in the DSM area, is
to acquire experience in it, in order to create a labo-
ratory of experimenting different DSM systems, thus
evaluating and confronting them.

After this, to gain practice experience in DSM area
and techniques, the motivation of a new DSM creation,
called Nautilus was born. Thus, the main motivation
of the new software DSM Nautilus is to develop a DSM
with a simple consistency memory model, in order to

provide good speedups, and also a with a simpler user
interface, totally compatible with TreadMarks and JI-
AJTA. This idea is very similar with the ideas uti-
lized by JIAJIA, mentioned in the studies of Hu[4]
and Eskicioglu[12], but Nautilus makes use of some
other techniques, which distinguishes it from JTAJTA.
These techniques will be mentioned bellow. In order
to be portable, it was developed as a runtime library
as TreadMarks, CVM and JTAJTA, because there is no
need to change the operating system kernel[2].

Nautilus is a page-based DSM, as TreadMarks and
JIAJIA. In this scheme, pages are replicated through
the several nodes of the net, allowing multiple reads
and writes[8], thus improving speedups. By adopting
the multiple writer protocols proposed by Carter[2],
false sharing is reduced and good speedups can be
achieved. The mechanism of coherence adopted is
write invalidation[8], because several studies [2, 3, 4,
12] show that this type of mechanism provides better
speedups for general applications. Nautilus, as JIA-
JIA does, uses scope consistency model, which is im-
plemented through a locked-based protocol[13]. It is
believed that this model is a relaxed view of release
consistency, thus it is simple, so it produces a little
overhead. If well applied, the release consistency model
yet can produce good speedups[1].

Nautilus is different from other DSMs in several
ways. First, its implementation is multithreaded, thus
it minimizes the context switches overheads, and in
addition, does not use SIGIO signals in its implemen-
tation. Second, as JTAJTA does, Nautilus manages the
shared memory using a home-based scheme, but with a
directory structure of all pages instead of only a struc-
ture of the relevant pages (cached), used by JIAJIA.
Third, as it uses the scope consistency model, which
can be viewed as a relaxed view of release consistency
model, it has a simple implementation, which produces
lower overheads. Fourth, a different memory organiza-
tion from JIAJIA.

2.1 Scope Consistency

Following the DSM classification proposed by
Carter[1], as it was said before (item 1), DSMs which
belong to the first generation have a big number of
consistency messages. This high number of consis-
tency messages fills the net up, decreasing so much
the speedups.

DSMs which belong to the second generation by
adopting the relaxed memory models, reduce dramati-
cally the number of consistency messages, delaying the
emition of them until the synchronization points. In
the second generation, several consistency models ap-
peared. The most importants are the Lazy Release
Counsistency(LRC), entry Consistency (EC) and Scope
Consistency(ScC).

LRC, which is a more relaxed form of release
consistency[3, 10](RC), “gquarantees that the shared
data are the most recent at any acquire operation”.[12]
As RC does, LRC allows multiple writer writers, by
the creation of the twins and diffs! [2], thus improving
the concurrence, so the speedups. The propagation of
the modifications (diffs) done in a critical section is
delayed until the next acquire[3], “even if only a few
or none of these data are used later.”[12] For exam-
ple, as TreadMarks does, when an invalidate protocol
is adopted, the diffs of the pages are only sent if the
node does a lock and access these pages.

In the EC model[9], each shared data is associated
with a lock, in such way that only the data associated
with the current lock is guaranteed to be the most re-
cent. So, this association implies that the programmer
needs to modify its programs, which can be a difficult
task depending on the data structures contained in it.

The ScC model[14] is proposed to bridge between
entry release consistency and release consistency. In-
stead of associate locks with shared data, locks are
associated with critical sections. As it was said in the
Eskicioglu[12] study: “Any modification made during
a critical section is guaranteed to be seen by other pro-
cessors that later enter the same section on the same
scope. General rules for the ScC' can be summarized as
follows: i) an ordinary memory access (read or write)
s allowed to happen with respect to any other proces-
sor only after all previous acquires are carried out; i)
a release is allowed to happen with respect to any other
processor only after all previous ordinary memory ac-
cesses to the region (protected by the same lock) are
performed; i) synchronization accesses are sequen-
tially consistent.”

Most of the applications written for LRC and RC
can run under ScC without any modification or with
a little modification. Thus, Nautilus can run the same
programs developed to TreadMarks and JIAJTA, only
changing the names of the primitives.

Concluding, Nautilus’s coherency protocol imple-
ments the ScC model because of its advantages and
simplicity.

2.2 Lock-based Coherence protocol

Nautilus follows the lock-based protocol proposed by
JIAJTA[12], because of its simplicity, thus minimizing
the overheads. Figure ??(from [12]) summarizes the
state transitions.

Based on this protocol, the pages can be in one of
three states: Invalid(INV), Read-Only (RO) and Read-
Write(RW). The following text, from [12]), with the
word “processor(s)” changed to “node(s)” explains the
transition state diagram : “ Multiple reads are allowed,

Ldiffs: codification of the modification suffered by a page dur-
ing a critical section

thus several nodes have cached copies of a page con-
currently. By resuming the protocol: initially all pages
are in RO state at all home nodes. Ordinary read and
write accesses to a RW page or read access to a RO
page, or acquire and release on an INV or RO page do
not cause any transition. Like the shared pages, each
lock has a home node”. On a release operation, the
node generate diffs for all modified pages and sends
them to their respective homes eagerly. Thus, as it
was said previously, this model can be considered a
release consistency mode. Also, the processor sends a
release request to the home node of the lock, along with
the write-notices (list of a modified pages) for the as-
sociated critical section. Similarly, an acquiring node
sends a request to the owner of the lock and waits until
it receives a grant message for the lock. Multiple ac-
quire requests for a lock are queued at the locks home
processor. When the lock becomes (or is) available, a
lock grant message is sent to the first node in the queue,
piggybacked with the applicable write-notices. After re-
ceiving the lock grant message, the acquiring node in-
validates the pages listed in the write-notices and con-
tinues with its normal operation.

Resuming, the home nodes of the pages always con-
tain a valid page, and the diffs corresponding to the
remote cached copies of the pages are sent to the home
nodes. A list with the pages to be invalidated in the
node is attached to the acquire lock message.

JIAJTA[3] only contains information of the relevant
pages, the cached copies of the pages, because it argues
that it reduces the space overhead the system[4]. On
the other hand, Nautilus maintains a local directory
structure for all pages, since it does not occupy a rele-
vant space and does not increases the overhead of the
system. Differently, this helps increasing the speedup
of the system.

Following JIAJIA [3, 12] idea, in Nautilus, the owner
nodes of the pages do not need to send the diffs to other
nodes, according to the scope consistency model. So,
diffs of pages written by the owner are not created,
what it’s believed to be more efficient than the lazy
diff creation of TreadMarks.

2.3 Nautilus’s Techniques

Nautilus is the first multithreaded DSM system imple-
mented on top of a free Unix platform that uses the
scope consistency model because:

1. there are versions of TreadMarks implemented
with threads, but it does not use scope consistency
memory model;

2. JIAJIA is a DSM system based on scope consis-
tency, but it is not implemented using threads.

3. CVMJ10] is a multithreaded DSM system, but

uses lazy release consistency and as of now, it does
not have a Linux based version.

Let’s summarize Nautilus features: i) scope consis-
tency only sending consistency messages to the owner
of the pages and invalidating pages in the acquire prim-
itive; ii) multiple writer protocols; iii) multithreaded
DSM: threads to minimize the switch context; iv) no
use of SIGIO signals(which notice the arrival of a net-
work message); v) minimization of diffs creation; vi)
primitives compatible with TreadMarks, Quarks and
JIAJIA; vii) network of PCs; viii) operating under
Linux 2.x; ix) UDP protocols.

To improve the speedup of the applications submit-
ted, Nautilus uses two techniques: i)multithreaded im-
plementation; ii) diffs of pages that were written by the
owner are not created.

The multithreaded implementation of Nautilus per-

mits: 1) minimization of context switch; 2) no use of
SIGIO signals;

The major part of all DSM systems created until
today implemented on top of an Unix platform uses
SIGIO signals to activate a handler to take care of
the arrival of messages which come from the network.
Some examples of DSMs that use the SIGIO signal are
TreadMarks and JTAJIA. One of the threads remains
blocked trying to read messages from the net. While
blocked, it remains slept, thus non consuming CPU.
This technique decreases the overhead of the DSM and
allows to give as CPU time as possible to the user
program. Thus, Nautilus is the first scope consistency
DSM system of the second generation which does not
use SIGIO signal in its implementation. The use of
a multithreaded implementation permits to eliminate
this overhead to take SIGIO signals and activate its
respective handler, in all arrivals of messages.

On the same way that TreadMarks and JIAJIA do,
also Nautilus is worried about network protocols. So,
it also uses UDP protocol to minimize overheads.

Nautilus also cares about compatibility of primi-
tives. Its primitives are simple and totally compati-
ble with TreadMarks, JTAJTA and Quarks; as a result
there is not any need of code rearrangements. One ex-
ample of this compatibility is that in this study, LU
and SOR are converted from JIAJIA and SOR from
TreadMarks, basically changing the name of the prim-
itives.

As TreadMarks and JIAJIA do, Nautilus also is wor-
ried about synchronization messages. To minimize
the number of messages, the synchronization messages
would carry consistency information, minimizing the
emission of the last ones.

3 Experimental Evaluation Plat-
form and Applications

The results reported here are collected on a 8 PC’s
network. Each node (PC) is equipped with a K6 - 233
MHz (AMD)processor, 64 MB of memory and a fast
ethernet card (100 Mbits/s) . The nodes are intercon-
nected with a hub. In order to measure the speedups,
the network above was completely isolated from any
other external networks. Each PC runs Linux Red Hat
5.0. The experiments are executed with no other user
process.

The test suite includes four programs: LU (from
SPLASH-2[15]), and SOR (from Rice University).
SPLASH-2 is a collection of parallel applications im-
plemented to evaluate and design shared memory mul-
tiprocessors.

“The LU kernel from SPLASH-2 factors a dense
matriz into the product of a lower triangular and up-
per triangular matriz. The NxN matriz is divided
into an nzn array of bxb blocks (N = n*b) to ex-
ploit temporal locality on submatriz elements. The ma-
triz is factored as an array of blocks, allowing blocks
to be allocated contiguously and entirely in the local
memory of processors that own then. LU is a kernel
from SPLASH-2 benchmarks that has a rate compu-
tation/communication O(N®)/O(N?), which increases
with the problem size N. The nodes frequently synchro-
nize in each step of computation and none of the phases
are fully parallelized*.[4]

“SOR from Rice University solves partial differential
equations (Laplace equations) with a Over-Relazation
method. There are two arrays, black and red array allo-
cated in shared memory. Each element from red array
is computed as an aritmethic mean from black array
and each element from black array is computed as an
aritmethic mean from red array. Communication oc-
curs across the boundary rows on a barrier. The SOR
from Rice University solves Laplace partial equations.
For a number of iterations it has two barriers each iter-
ation and communication occurs across boundary rows
on a barrier. The communication does not increase
with the number of processors and the relation com-
munication/computation reduces as the size of problem
increases”. [4]

In order to show the compatibility of Nautilus with
TreadMarks and JTAJTA primitives, the program SOR
was taken from TreadMarks and and the program LU
was taken from JIAJIA distribution, only changing the
names of its primitives, without to rearrange any code.

4 Result Analysis

Before presenting the results and their analysis, it is
necessary to emphasize that the execution time for

number of nodes = 1 in all evaluated benchmarks is ob-
tained from the sequential version of the benchmarks
without any DSM primitive. So, the primitive used to
allocate memory to obtain the sequential time (num-
ber of nodes = 1) is malloc(), default primitive of C
programming.

In order to have an accurate, homogeneous and fair
comparison, the same programs are executed using
TreadMarks (version 1.0.3) and JIAJIA (version 2.0).
Only a few results were obtained with the current
version of JIAJIA (supposing some implementation
problem). JIAJIA only execute correctly programs
with even number of nodes.

Due to the limitation of the TreadMarks ver-
sion (1.0.3) used:

i) the applications were executed and the speedups
measured using Nautilus running on up to 8 nodes;

ii)bigger input sizes for both benchmarks LU and
SOR, were not possible to be evaluated.

Each application is executed with two different data
input size to evaluate the effect of problem size on the
speedups.

The data input size N used in the LU evaluation
are N = 1024 and N = 1792. The data input size
of red and black matrix used in SOR evaluation are
1024x1024 and 1792x1792. The number of itera-
tions for the SOR benchmark is 10 .

4.1 LU

Looking at the figures 1 and 2, the speedups of the
three DSMs can be seen under two different input size:
N=1024 and N=1792.

The increasement of N improves the locality of LU,
when it is submitted to both DSMs, thus improving
its speedups, as it can be seen, for example, with 7
nodes, switching from N=1024 to N=1792, when the
speedups change from less than 5.5 to more than 5.5,
for TreadMarks.

With a number of nodes less than 3 nodes, for the
two different input size, the speedups of the three DSM
systems are very similar. With four nodes, for N=1024
and N=1792, JTAJIA has the best speedup. Taking
advantage of its data distribution and the lower num-
ber of diffs sent, for N=1024, TreadMarks is faster
than Nautilus and JIAJIA and, as a consequence, has
better speedups. But, for N=1792, Nautilus is faster
than TreadMarks and JIAJIA. This behavior occurs
because with this N value, due to lazy release consis-
tency model adopted by TreadMarks, too much diffs
are stored, causing the swapping of the operating sys-
tem.

In terms of percentage, for N=1024, TreadMarks
outperforms Nautilus about 2% until 5 nodes and
10.5% with 7 nodes and Nautilus is faster than JIAJIA
up to 4%. For N=1792, Nautilus outperforms Tread-

Speedup of Lu - N = 1024
55

"lu.1024x1024.TreadMarks" ——
"I JOZAX/%/)QZ%%A " =]

. 1024x1024 . Nau

o

4.5

35

Speedup

25

15

1 2 3 6 7 8

N?meer of Nodgs
Figure 1: speedups of LU: N=1024

Speedup of LU - N = 1792

"u.1792x1792.TreadMarks" ——-
"I .1792)(1792‘4.3 IAJIA" -
0:1792x1792NEui e

o
o

Speedup
w
2

1 2 3 6 7 8

4 5
Number of Nodes

Figure 2: speedups of LU: N=1792

Marks about 2 until 6.60% (2 nodes) and TreadMarks
outperforms JIAJIA around 7%.

Summarizing, the good data distribution used by
TreadMarks, the lower number of diffs sent due to
its consistency model, minimizes the number of mes-
sages through the net and gives it better speedups
than JIAJIA and Nautilus. Although JIAJIA and
Nautilus use the same memory consistency model, the
use of multithreading and the avoidance of SIGIO sig-
nals makes Nautilus faster than JIAJIA. So, the two
release consistency models, lazy release consistency
model (adopted by TreadMarks) and the scope consis-
tency model (adopted by Nautilus and JTAJTA) have a
good and similar behavior, providing good speedups.

4.2 SOR

Looking at the figures 3 and 4, the speedups of the
three DSMs can be seen under different input size:
N=1024 and N=1792.

The speedups of JIAJTA as can be seen in the figures
3 and 4, and , are very unusual . Therefore any related
speedups are not considered for SOR analysis.

Speedup of Sor - N = 1024
35

"sor.1024x1024.TreadMarks" —<—
"s07.1024x1024.JIAJIA" 4=

"sor.1024x1024. Ngy#ilus” -B-
s o2 Ngis 5]

25

Speedup

15

0.5 = - h

1 2 3 6 7 8

Ntmber of Nudgs
Figure 3: speedups of SOR: N=1024

Speedup of Sor - N = 1792

"sor.1792x1792.TreadMarks" ——.--
"s07.1792x1792.JIAJIA" -+
"sor.1792x1792.Nautilus™ 8-

3.5

25

Speedup

15

1 2 3 6 7 8

4 5
Number of Nodes

Figure 4: speedups of SOR: N=1792

For both N=1024 and N=1792, and for 2 to 8 nodes
Nautilus outperforms TreadMarks. For N=1024 the
speedup difference reaches up to 26.31%. And, for
N=1792, the speedup difference reaches up to 23.36%.
The excellent speedup of Nautilus happens because of
the better data distribution (choice of the page own-
ers) addopted by itself improving the matrix data lo-
cality (minimizing the number of messages through the
net) and giving a lower cold start up time to distribute
shared data. Also the avoidance of SIGIO signals and
the multithreading help to improve the SOR speedup.

Changing N from 1024 to 1792, the locality of the
SOR improves, also improving the speedup.

Justifying the best speedups of Nautilus: with a low
number of processors, the speedup difference between
Nautilus and TreadMarks is higher, because of the
higher cost of lazy release consistency to maintain the
directory on a page fault. It is needless to alloc twins
and diffs when a page is written in its owner(node),
which decreases the overhead and also the data distri-
bution (choice of the page owners), multithreading and
the avoidance of SIGIO signals, improve the Nautilus
speedup.

5 Conclusion

In this paper a new DSM called Nautilus was presented
and described. Its features were justified and com-
pared with other well known DSM systems: Tread-
Marks and JIAJIA. In addition, Nautilus’s speedup
was confronted and compared with TreadMarks and
JIAJIA DSMs, on the same environment, with the
same computers, network and operating system.

For the LU applicative, TreadMarks has the best
speedups for N=1024 , reaching until 10% more
speedup than Nautilus. For N=1792, Nautilus has the
best speedup, until 6.6% faster than TreadMarks. For
the SOR, Nautilus has the best speedup also, reaching
until 28.87% more speedup than TreadMarks.

As shown, Nautilus has good speedups, comparable
to other well-known DSMs, surpassing some of them
depending on the application. The use of multithread-
ing, the avoidance of SIGIO signals and a good data
distribution (choice of the page owners) also help to im-
prove Nautilus speedup. Other data distribution are
undergoing study, in order to further improve Nautilus
speedup. The lazy release consistency model (Tread-
Marks) and the scope consistency model (JIAJIA and
Nautilus) presented good speedups for all the bench-
marks evaluated in this paper.

Since only a few results were obtained with the cur-
rent version of JIAJIA, it will be possible to compare
the speedups of an improved version of this DSM with
TreadMarks and Nautilus.

By evaluating other problem size: one of the prob-
lems of this study is the Demo version of TreadMarks
that was evaluated. This version, that has the same
efficiency of a normal version of the software, has two
problems limitations: the size of the shared memory
and a limited number of nodes. Another improved ver-
sion is being acquired and due its memory release con-
sistency model and its need to store diffs, more memory
is being provided to evaluate it better.

References

[1] Carter J. B., Khandekar D., Kamb L., Distributed
Shared Memory: Where We are and Where we
Should Headed, Computer Systems Laboratory, Uni-
versity of Utah, 1995.

[2] Carter J. B., Efficient Distributed Shared Memory
Based on Multi-protocol Release Consistency, PHD
Thesis, Rice University, Houston, Texas, September,
1993.

[3] Keleher P. , Lazy Release Consistency for Dis-
tributed Shared Memory, PHD Thesis, University of
Rochester, Texas, Houston, January 1995.

[4] Hu W., Shi W., Tang Z., JIAJIA: An SVM System
Based on a new Cache Coherence Protocol, technical
report no. 980001, Center of High Performance Com-
puting , Institute of Computing Technology, Chinese
Academy of Sciences, January, 1998.

[5] Marino M. D.; Campos G. L.; A Preliminary DSM
Speedup Comparison: JIAJIA x Nautilus, to be pub-
lished at HPCS99.

[6] Li K, Shared Virtual Memory on Loosely Coupled
Multiprocessors, PHD Thesis, Yale University, 1986.

[7] Swanson M., Stoller L., Carter J., Making Dis-
tributed Shared Memory Simple, Yet Efficient, Com-
puter Systems Laboratory, University of Utah, tech-
nical report , 1998.

[8] Stum M. , Zhou S. , Algorithms Implementing
Distributed Shared Memory, University of Toronto,
IEEE Computer v.23 , n.5 , pp.54-64 , May 1990.

[9] Bershad B. N. , Zekauskas M. J. , SawDon W.
A., The Midway Distributed Shared Memory System,
COMPCOM 1993.

[10] Keleher P., The Relative Importance of Concur-
rent Writers and Weak Consistency Models, in Pro-
ceedings of the 16th International Conference on
Distributed Computing Systems (ICDCS-16), pp.
91-98, May 1996.

[11] Becker D., Merkey P.; Beowulf: Harnessing the
Power of Parallelism in a Pile-of-PCs, Proceedings,
IEEE Aerospace, 1997.

[12] Eskicioglu, M.S., Marsland T.A., Hu W, Shi W ;
Evaluation of the JIAJIA DSM System on High
Performance Computer Architectures, Proceeding of
the Hawai’i International Conference on System Sci-
ences, Maui, Hawaii, January, 1999.

[13] Hu W. , Shi W., Tang Z.; A lock-based cache
coherence protocol for scope consistency, Journal
of Computer Science and Technology, 13(2):97-109,
March, 1998.

[14] Iftode L., Singh J.P., Li K; Scope Consistency: A
bridge between release consistency and entry consis-
tency. Proceedings of the 8h ACM Annual Sym-
posium on Parallel Algorithms and Architectures
(SPAA’96), pp. 277-287, June, 1996.

[15] Woo S., Ohara M., Torrie E., Singh J.P., Gupta
A.; The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings of the
22th Annual Symposium on Computer Architecture,
pages 24-36, June, 1995.

