A Preliminary Study of an Application Code
Optimization when It’s Submitted to be Executed on
top of a DSM System

Maério Donato Marino, Geraldo Lino de Campos and Liria Matsumoto Sato

Department of Computer Engineering (PCS)
Polytechnic School, University of Sao Paulo
Sao Paulo, Brazil
e-mail:{mario, geraldo, liria}@regulus.pcs.usp.br

Abstract

Distributed Shared Memory (DSM) is an abstraction of shared address space
over a network of computers, which is a distributed system. This model allows
programs, that have been written for shared memory, to be easily ported, without
the programmer worrying about movimentation, linearization and packaging of data,
ports and send-receive primitives. In DSM systems to reduce computation time
changes the relation between computation time and the pair time to obtain data
and time spent on synchronizations. Nautilus is a DSM system, that uses release
consistency and some techniques like multiple concurrent writers, multithreading
and bypassing TCP/IP stack. This is a preliminary study to investigate what’s the
influence of the application code optimization over the speedup of Nautilus DSM
system, which also ins in development. In this paper, we compare the speedup
difference between an application program with and without a -O2 optimization
of gcc compiler. For this comparison, we experiment this optimization with two
different programs Matmul and EP (from NAS) and submit them on Nautilus.

area: distributed systems

1 Introduction

Paralellism with the agregation of several processors or nodes, has adopted two tendencies:
physical shared memory and distributed memory.

In distributed memory model, the programmer needs to worry with movimentation,
sending and receiving messages, packaging and linearization[1]. Because of the saturation
and contention of the memory bus that interconnects the processors, the distributed
model is more scaleable than the physical shared memory. On the other hand, the shared
model is easier to create and to port programs. Distributed Shared Memory is a software
abstraction|1] of shared memory over a computer network, as we can see in figure 1.

To operate as a DSM system, the system must [1]: (i) replicate or migrate data; (i)
permit portability of the parallel programs that have been written for shared memory;
(771) maintain the consistency of the data among nodes of the network.

The main factor that determinates the speedup of a DSM system is the number
of messages that are transmitted through the net. In the last 5 years, the international
community has been working intensively to reduce the number of messages. Some people
investigate the data locality and data distribution. Some people attack the synchroniza-
tion with distributed barrier and lock algorithms. Other people attack the consistency
with the adoption of weak consistency models.

Basically, in DSM systems there are three types of messages that are transmitted
through the net:

e data messages: if the data coherence unit is a page, there will be messages that
contain pages;

e consistency messages: messages that contain diffs [2, 3|(diffs are a codification of
the modifications suffered by a page during a critical section) ;

e synchronization messages: parallel programs need synchronization to coordinate
their actions. Barriers and locks are used to synchronizate distributed processes
over the network. Thus, there will be messages of synchronization that implement
barriers and locks.

As synchronization is a consequency of parallel programs behaviour, some memory consis-
tency models have proposed to maintain the consistency only at these points (of synchro-
nization), thus reducing dramatically the number of consistency messages. These memory
models are weak consistency model and its variations. For instance, release consistency|2],
lazy release consistency|3|, entry consistency[4] and scope consistency[5].

As a consequence of this reduction, it’s possible to achieve better speedups, similar to
a physically shared memory machine |3].

processor 1 processor 2 pocesr3 | @ @ @ processor N
memory 1 memory 2 memory 3 000 memory N
network
abstraction of shared memory

figure 1: abstraction of DSM |2, 3]

Concluding, DSM systems try to maximize the reduction of any type of messages that
are transmitted through the net.

The DSM speedup will be good if the relation between computation time and the pair
time to obtain data and time spent on synchronization operations is as high as possible.

If we optimize the application level code in sequential programming, in most cases a
good computation time reduction is obtained. In DSM systems to reduce computation
time changes the relation between computation time and the pair time to obtain data
and time spent on synchronizations. But, what does happen if we optimize the code of an
application and submit it on a DSM system ? This is a preliminary study to investigate
what’s the influence of the application code optimization over the speedup of the DSM
system.

To investigate this purpose, we will use a free Unix and a free compiler: Linux (2.X)
and gcc compiler. The optimization level which was chosen is -O2. The DSM system
chosen is Nautilus and the version of this software evaluated is under development. Thus,
the main objective of this article is to execute two applications with and without -O2
level and compare the speedup difference. The applications chosen for this evaluation are
Matmul and EP (from NAS benchmark).

The remaining of this paper is organized as follows: Section 2 introduces some Nautilus
features and why Nautilus was chosen. Section 3 describes the -O2 optimization code
generated from gcc compiler. Section 4 describes the programs that are being submitted
to Nautilus with its input parameters. Section 5 presents evaluation results on a network
of PCs. This paper is summarized in Section 6.

2 Nautilus

Before describing Nautilus, it’s useful to mention that some other DSM systems such as
Munin[2], TreadMarks[3], CVM|[7] and JIAJIA[6], in order to improve the performance,
applied some techniques:

e multiple concurrent writers and diffs propagation |2, 3|;

lazy diff creation [3];

page faults handling overheads eliminated via annotated load and store operations
[7];

multithreading [8] to minimize the context switch;

use sockets and UDP protocol to minimize TCP overheads;

bypass the TCP/IP stack [9];

The main features of Nautilus DSM system are:

e update or invalidate consistency messages, so it replicates the shared data;
e release consistency memory model mechanism ;

e multiple concurrent writer and diffs;

e tcp or udp protocols;

e multithreading (linuzthreads);

e bypassing of the tcp/ip system (not yet implemented);
e network of PCs (low cost);

e free Unix (Linux 2.X);

e primitives compatible with TreadMarks and JIAJIA; so it is too easy to modify
programs from this DSM systems to be executed over Nautilus.

We will now justify why we use Nautilus DSM systems in our experiment.

As Quarks, TreadMarks, CVM and JIAJIA do, Nautilus can use the UDP protocol
to minimize the overhead of TCP/IP system. We are working to add techniques (not yet
implemented) from Gamma Project|9] to bypass the stacks of TCP and UDP protocols.
We believe that with this technique we will greatly reduce the overhead of the system.

In 1995, for instance, Quarks used pthreads to minimize the switch context overhead of
its routines. But in 1998, its development team chose not to use threads any more because
they don’t improve the performance a lot. In Nautilus system we use linuzthreads, be-
cause with the operating systems and machines evolution to multithread systems, threads
generate less overhead than processes.

As TreadMarks and Quarks, Nautilus can be executed on a network of PCs, that has
been much used on several projects[10]; so, with a free operational system and a low
cost network of PCs, it’s possible to have an environment for the development of parallel
applications over a distributed memory machine model.

The Nautilus primitives are totally compatible with TreadMarks and JIAJIA.Thus,
it’s easy to port programs from other DSM systems or from physically shared memory
machines using m4 macros. A good example of this compatibility is that the programs

Matmul and EP (NAS) were modified from JTAJIA.
3 -02 optimization of gcc compiler
-O2 optimization involves optimizations that do not involve a space-speed tradeoff are
performed [10].

For more details, use the command man gcc on a unix machine that has gee installed|10].
4 Experimental Evaluation

In this study, Nautilus is operating with:

e update protocol to maintain the consistency;

e TCP protocol.

We will evaluate two application programs, Matmul and EP (NAS benchmark) in order
to evaluate the behavior of the speedup, with and without -O2 optimization of gcc.

4.1 Evaluation Programs
4.1.1 Matmul

Matmul is a simple matrix multiplication program with inner product algorithm. All
arrays are allocated in shared memory. To achieve a good data locality, the multiplier
is transposed before multiplication. This program requires no synchronization in the
multiplication process, so only three barriers are used at the beginning and the end of the
program|8|.

The matrix size of the matrix used in this experiment is 1024x1024.

4.1.2 EP (from NAS)

The Embarrassingly Parallel (EP) program from the NAS benchmark suite generates pairs
of Gaussian random deviates with a scheme that is well suited for parallel computation and
tabulates the number of pairs successively. The only communication and synchronization
in this program is summing up a ten-integer list in a critical section at the end of program
8]

The parameter used in EP program is M—=2%,

4.2 Environment

The evaluation programs of this study are executed on top of Nautilus on the following
network of PCs:

e nodes: K6 - 233 MHz (AMD), 64 MB of memory and 2 GB IDE disk;

e interconnection: a hub and fast ethernet cards (100 Mbits/s).

In order to measure the speedups, the network above was fully isolated from any other
external network.

The operating system used was Linux Red Hat 5.0.

The compiler used in this experiment is gce-2.7.2.3, with -O2 option.

The applications were executed and the speedups measured using Nautilus running
on up to 7 nodes.

5 Analysis of the Results

5.1 Matmul
5.1.1 Matmul results

We have measured the execution time of Matmul 1024x1024 matrix sizes, increasing the
number of nodes. The resulting times are shown in tablel.

Also, we calculate some parameters:
speedupnop(i) = %,

N top(1)
speedupop(i) = rop(i)

tr = % x 100 %, tr is the time reduction,

sp = Speedupnop—speedupop o 1) % s is the speedup reduction
speedupnop ’

as shown in table 1, where

(i) means the number of nodes where Nautilus is being executed,

tnop(i)are the times (in seconds) with i nodes and without -O2 optimization ;

top(i)are the times (in seconds) with i nodes and -O2 optimization;

speedupnop(i) is the speedup with i nodes and without -O2 optimization;

speedupop(i) is the speedup with i nodes and -O2 optimization;

‘ (i) ‘ tnop(i) (s) ‘ top(i) (s) ‘ speedupnop(i) ‘ speedupop(i) ‘ tr(%) ‘ sr(%) ‘

1 187.90 130.20 1.00 1.00 30.00 | 0.00
2 109.30 80.50 1.72 1.62 26.30 | 5.81
3 91.90 73.30 2.04 1.77 20.20 | 13.23
4 80.30 61.90 2.34 2.10 22.20 | 10.25
3 75.10 69.80 2.50 1.86 7.00 | 25.60
6 79.60 75.60 2.36 1.72 5.00 | 27.12
7 92.20 91.30 2.04 1.42 1.00 | 30.40

table 1: metrics obtained from Nautilus executing Matmul without and with
optimization (size = 1024)

From table 1, we obtain figure 2, where the speedups of Matmul without and with
-0O2 optimization are ploted.

By observing figure 2, we have obtained a good speedup for up to 5 nodes, in both
cases (with and without -O2 optimization). The saturation of the speedup curve occurs
because the PCs are interconnected by a hub, so when we increase the number of nodes,
more collisions occur because more pages are transmitted through the net, saturating the
network and slowing down the performance. The speedup obtained wasn’t linear because,
as we said, many pages are transmitted and because of the shared media (hub) several
collisions occur slowing down the speedup.

Speedup of Matmul
2.6

"mat.data’ —<—
"matotim.data" -+--

2.4

2.2

2

18

Speedup

1.6

1.4

1.2

1
1 2 3 4 5 6 7
Number of Nodes

figure 2: speedup of Matmul without (mat.data) and with (matotim.data) -O2
optimization (matrix size = 1024)

5.1.2 Comparison between speedups of Matmul program with and without
-0O2 optimization

From table 1, the time reduction quotient is decreasing as we increase the number of
nodes because of the saturation of the network, since more messages containing pages are
transmitted to more nodes. Besides, by observing figure 2 and table 1 (speedup reduction
column), for all nodes, the speedup of the optimized program is worser than the non
optimized, as we mentioned previously, because as the application runs faster, the time
to send synchronization and consistency messages becomes more decisive on the relation
between computation time, synchronization and consistency.

5.2 EP (from NAS benchmark)
5.2.1 EP results

We have measured the execution time of EP with M=2%* increasing the number of nodes.
The resulting times are shown in table 2.

As the same way as item 5.1.1, we calculate the same proposed metrics.

| (i) | tnop(i) (s) | top(i) (s) | speedupnop(i) | speedupop(i) | tr(%) | sr(%) |

1 124.30 90.40 1.00 1.00 27.27 1 0.00
2 62.40 46.80 1.99 1.93 25.00 | 3.01
3 43.40 32.80 2.86 2.75 24.42 | 3.85
4 33.90 26.60 3.67 3.40 21.53 | 7.36
5 30.00 22.80 4.14 3.96 24.00 | 4.35
6 26.90 22.70 4.62 3.98 15.98 | 13.85
7 25.20 22.80 4.93 3.96 9.52 | 19.68

table 2: metrics obtained from Nautilus executing EP without and with -O2
optimization (M=22*)

As the same way as item 5.1.1 does, we can calculate time reduction and speedup
reduction, as showed in table 2.

As we can see on table 2, the reduction of time remains constant until 5 nodes because
of the small number of synchronization messages and the high locality that this program
presents. For more than 5 nodes, the contention and saturation of the network because
of the synchronization equalize the times, producing low time reduction.

The speedup reduction from table 2 shows that until 5 nodes the speedups are almost
the same (low speedup reduction) and with more than 5 nodes the speedup reduction
increases, as we justified in last paragraph.

By the same way as item 5.1.1, we can obtain from table 2 the speedup curve (figure
3) for EP.

By observing figure 3, we reach almost a linear speedup for up to 3 or 4 nodes and
a good speedup for up to 7 nodes in both cases (with and without -O2 optimization).
Because the PCs are interconnected by a hub, when we increase the number of nodes,
more collisions occur at the synchronization point, slowing down the performance. The
EP program, as we said, has almost no communication, so the speedup is very good
(almost linear) as we increase the number of processors.

Speedup of EP with and without optimization

45

35

Speedup
w

25

15

1

1 2 3 4 5 6 7
Number of Nodes

figure 3: speedup of EP without (ep.data) and with (epotim.data) -O2 optimization
(M=2%%)

5.2.2 Comparison between Matmul and EP

Concluding, the behavior of Matmul and EP are different: EP has more locality and few
synchronization and data transmitted through the net, so the optimization is better in
this case, giving small speedup reduction.

Matmul has more synchronization and more messages containing data (pages), thus
the optimization does not produce good effects.

6 Conclusion

As we can see, applying some code optimization, using a network of workstations with
shared media and a DSM which adopts release consistency model, gives worser speedups.
We show that with two different applications, Matmul and EP, which generate a little
synchronization, the speedup decreases depending on the locality and synchronization of
these programs. Concluding, we could see that the speedup decreases with the application
code optimization for the applications evaluated.

We expect that if we test with programs that have more synchronization, the optimiza-
tion code does not improve the speedup, there isn’t time reduction in this case. In the case
studied in this paper, EP has less synchronization and data (pages) that are transmitted,
so the optimization changes the speedup a little. Matmul has more synchronization and
messages containing data.

We think if we apply a technique as from [9], as synchronization and time spent with
consistency messages decrease, there will be small decrease of speedups we observed.

Verifying if there is speedup behavior difference, we intend to do as a future work:

e changing the hub by a switch;

e trying another programs, from SPLASH-II suite for example;

e applying a technique as from [9], improving the network performance;

e finish this version which is in development to evaluate again the influence of the
same benchmarks;

e trying other optimization levels of gcc.

References

[1] Stum M., Zhou S. , Algorithms Implementing Distributed Shared Memory, University
of Toronto, IEEE Computer v.23 |, n.5 , pp.54-64 , May 1990.

[2| Carter, J. B. , Efficient Distributed Shared Memory Based on Multiprotocol Release
Consistency, PHD Thesis, Rice University, Houston, Texas, September, 1993.

[3] Keleher P. | Lazy Release Consistency for Distributed Shared Memory, PHD Thesis,
University of Rochester, Texas, Houston, January 1995.

[4] Bershad B. N. ;| Zekauskas M. J. , SawDon W. A. | The Midway Distributed Shared
Memory System , COMPCOM 1993.

[5] Iftode L., Singh J.P., Li K., Scope Consistency: A Bridge between Release Consistency
and Entry Consistency, In The 8th Annual ACM Symposium on Parallel Algorithms
and Architectures, 1996.

[6] Hu W., Shi W., Tang Z., JIAJIA: An SVM System Based on a new Cache Coherence
Protocol, technical report no. 980001, Center of High Performance Computing , Institute
of Computing Technology, Chinese Academy of Sciences, January, 1998.

[7] Keleher P., The Relative Importance of Concurrent Writers and Weak Consistency
Models, in Proceedings of the 16th International Conference on Distributed Computing
Systems (ICDCS-16), pp. 91-98, May 1996.

[8] Swanson M., Stoller L., Carter J., Making Distributed Shared Memory Simple, Yet
Efficient, Computer Systems Laboratory, University of Utah, technical report , 1998.

[9] Chiola, G., Gamma Project: Genoa Active Message Machine,
http:/www.disi.unige.it /project/gamma.

[10] http:/www.gnu.org, GNU Gce manual

