A Preliminary Speedup Comparison between TreadMarks and
Nautilus DSM Systems

Mario Donato Marino, Geraldo Lino de Campos*

Computing Engineering Department- Polytechnic
School of University of Sao Paulo

Abstract

Nautilus is a Multithreaded Distributed Shared Mem-
ory system based on scope consistency. The multi-
thread implementation disallows the use of SIGIO sig-
nals in order to minimize the context switch of tradi-
tional processes. This paper shows the results of some
benchmarks submitted to Nautilus. To have an accu-
rate and correct evaluation of Nautilus, it is compared
with the main important DSM system: TreadMarks.
The benchmarks evaluated in this study are: IS (from
NAS), Matmul (matrix multiplication) and SOR (from
Rice University).

1 Introduction

In the last 6 years the research on Distributed Shared
Memory (DSM) [7] area has great diffused, with the
development of a large number of consistency models
and DSM systems. Carter[1] has classified the DSM
evolution in two generations, the first one character-
ized by a big number of consistency messages and the
sequential consistency and the second one, by a big
reduction of the number of consistency messages and
by the adoption of a release consistency model.

Nowadays, it is believed that it is more appropri-
ated to use a new DSM classification. It is possible
to extend the DSM evolution classification suggested
by [1], by introducing a third generation, represented
by a new generation of DSM systems. By adapting
the definition from Carter[1], these three generations
would be characterized by: 1) a big number of con-
sistency messages by the adoption of the sequential
consistency model; Ivy[6] is an example; 2) a drastic
reduction of the number of consistency messages by
the adoption of the release consistency model, apply-
ing techniques to reduce the false sharing; Munin[2] is
an example; 3) several efficient consistency models and
a minimal number of messages to maintain the consis-
tency; TreadMarks[3], JTAJIA[4] and Nautilus[5] are
examples. This paper introduces a DSM system that
belongs to the third generation: Nautilus.

*{mario, geraldo}@regulus.pcs.usp.br

Commonly, DSM comparisons base on simulations,
rather than confronting execution results, for example,
two different DSM systems over a computer network.
So, the main goal is to evaluate Nautilus in an accu-
rate way, confronting it with other well known DSM
system, TreadMarks, executing them on the same net-
work, machines and operating system; once they are
evaluated under the same conditions, the results of this
comparison would tend towards accurate comparisons.

There are a few previous papers [2, 3] comparing
different DSM systems; however, most of them do not
evaluate DSM systems that belong to the third gen-
eration. One of the contributions of this paper is to
show the speedups of two different third generation
DSM systems being executed on the same network of
computers, because comparing executions is more ac-
curate and more correct than comparing simulations
of the DSMs.

In addition, as there are papers|2, 3| that are using
networks with different operating systems, to equalize
the comparison, these two third generation DSM sys-
tems are compared on a PC computer network with
a free operating system. So, with an ordinary hard-
ware, a free operating system, and a DSM system used
throughout the academic community, it is guaranteed
that the network, the computers and the operating
system are the same to do an homogeneous and fair
comparison.

The comparison of Nautilus speedups with Tread-
Marks speedups is done by applying three different
benchmarks: IS (from NAS), Matmul (matrix multi-
plication) and SOR, (from Rice University).

The environment of the comparison is a 8PC’s net-
work interconnected by a fast-ethernet shared media.
The operating system used in each PC is Linux (2.x).

2 TreadMarks

2.1 TreadMarks features

TreadMarks [3] is one of the most important DSM sys-
tems. It was the first DSM to have its speedup compa-
rable [3] to a shared memory machine. The speedups
of TreadMarks made it the main DSM used by the sci-
entific community as a reference of optimal speedups.
Thus, it makes sense to compare Nautilus, a new DSM
system, with TreadMarks, in order to have an accurate
evaluation of its performance.

The consistency model used by TreadMarks is lazy
release consistency|[3], so the propagation of the mod-
ifications ocurred during a critical section is delayed
until the next acquire. By using multiple writer pro-
tocols and the lazy release consistency model, the
speedups of TreadMarks are very known, making it
one of the most used DSM systems.

Let’s summarize TreadMarks features: i) lazy re-
lease consistency and its variations [3], minimizing the
number of consistency messages through the net; ii)
multiple writer techniques of Munin [1]; iii) primitives
compatible with m4; iv) AIX, Solaris, free Unix (Linux
2.x); v) UDP protocols.

The efficiency of TreadMarks is mainly derived from
its lazy release consistency model. The major draw-
back of adopting this model is the high need of memory
to store the diffs' all over the user’s application execu-
tion. So, the size of the benchmarks used to evaluate
the speedups of the DSM system can be compromised
if there is not enough memory to execute the program
or if the operating system does swap. If it cannot use
enough size to run the benchmarks, the relation com-
putation versus synchronization becomes unfavorable
to use a DSM system.

3 Nautilus

Nautilus is the first multithreaded DSM system imple-
mented on top of a free unix platform that uses the
scope consistency model, because: 1) As of now, there
are no multithreaded versions of Treadmarks that can
be executed on Linux 2.x, but only a process-based
version; 2) JIAJIA is a DSM system based on scope
consistency, but it is not implemented using threads;
3) CVM]8] is a multithreaded DSM system, but uses
lazy release consistency and as of now, it does not have
a linux based version.

Let’s summarize Nautilus features: i) scope consis-
tency (possibly interpreted as a kind of release consis-
tency implementation) only sending consistency mes-
sages to the owner of the pages and invalidating pages
in the acquire primitive ; ii) multiple writer techniques;
iii) multithreaded DSM to minimize the switch con-
text; iv) no use of SIGIO signals, which notice the
arrival of a network message; v) minimization of diffs
creation; vi) primitives compatible with TreadMarks
and JTAJIA; vii) operating under Linux 2.x; viii) UDP
protocols.

Nautilus is based in the following idea: the owner
nodes of the pages do not need to send the diffs to
other nodes, according to the scope consistency model.
So, diffs of pages written by the owner are not created,
what it’s believed to be more efficient than the lazy
diff creation of TreadMarks. It is believed that the
scope consistency model is a different implementation
of the release consistency model that can produce good
speedups if well applied.

Ldiffs: codification of the modification suffered by a page
during a critical section

As TreadMarks and JIAJIA do, Nautilus also wor-
ries about synchronization messages. To minimize
the number of messages, the synchronization messages
would carry consistency information, minimizing the
emission of the last ones.

To improve the speedup of the applications submit-
ted, Nautilus introduces two news: i) multithreaded
implementation; ii) diffs of pages that were written
by the owner are not created. The multithreaded im-
plementation of Nautilus permits: i) minimization of
context switch; ii) no use of SIGIO signals. Most of all
DSM systems created until today implemented on top
of an Unix platform uses SIGIO signals to activate a
handler to take care of the arrival of messages which
come from the network. Some examples of DSMs that
use the SIGIO signal are TreadMarks and JIAJIA.
The use of a multithreaded implementation permits to
eliminate this overhead to take SIGIO signals and acti-
vate its respective handler, in all arrivals of messages.
Avoiding the use of SIGIO signal and the handler sys-
tem call minimizes the overheads of the system.

On the same way that TreadMarks, also Nautilus
is worried about network protocols. So, it uses UDP
protocol to minimize overheads.

Nautilus also cares about compatibility of primi-
tives. Its primitives are simple and totally compati-
ble with TreadMarks and JIAJIA; as a result, there
is not any need of code rearranjements. One exam-
ple of this compatibility is that IS and Matmul are
converted from JIAJIA and SOR from TreadMarks,
basically changing the name of the primitives.

4 Experimental Evaluation

4.1 Environment

The evaluation programs of this study are executed
on top of Nautilus on the following network of PCs: i)
nodes: K6 - 233 MHz (AMD), 64 MB of memory and
2 GB IDE disk; ii) interconnection: a hub and fast
ethernet cards (100 Mbits/s). In order to measure the
speedups, the network above was completely isolated
from any other external networks. The operating sys-
tem used was Linux Red Hat 5.0.

Due to the limitation of the TreadMarks ver-
sion used: i) the applications were executed and the
speedups measured using Nautilus running on up to
8 nodes; ii) bigger input sizes than 1792 for the
benchmarks Matmul and SOR, were not possible to
be evaluated.

4.2 Evaluation programs

4.2.1 IS (from NAS)

“The IS problem from NAS Benchmarks ranks an un-
sorted sequence of keys using bucket sort. It is unique
in that floating point operations are not involved. The
parallel version of IS divides up the keys among pro-
cessors. There is a shared bucket for all processors

and each processor has a private bucket. First, each
processor counts its keys in the private array of buck-
ets. These values in private buckets are summed up
into the shared bucket in a critical section which is
protected by a lock. Finally, each processor reads the
sum and ranks their keys.”[4] The parameters used in
the evaluation are NUMREPS=10, MAXKEY =
27 and the following N(number of keys): N=222.

4.2.2 Matmul

“Matmul is a simple matriz multiplication program
with inner product algorithm. All arrays are allocated
in shared memory. To achieve a good data locality,
the multiplier is transposed before multiplication. This
program requires no synchronization in the multipli-
cation process, so only three barriers are used at the
beginning and the end of the program.”’[4] The matrix
size used in this experiment is 1408x1408.

4.2.3 SOR (from Rice University)

“SOR from Rice University is solves partial differential
equations (Laplace equations) with a Over-Relazation
method. There are two arrays, black and red array
allocated in shared memory. Each element from red
array is computed as an aritmethic mean from black
array and each element from black array is computed
as an aritmethic mean from red array. Communica-
tion occurs across the boundary rows on a barrier”.[4]
The size of red and black matrix used is 1408x1408.
The number of iterations is 10 .

5 Result Analysis

Speedup of IS - N = 2122

'is.N22. TreadMarks" -—
"is.N22.Nautilus" —+--

Speedup

4 5
Number of Nodes

figure 1: speedups of IS - N=222

IS

The computation to communication ratio of IS in-
creases linearly with the problem size. ”In IS, most

5.1

time-consuming computation is for each processor to
count its local part of keys. Summing the counting
results up in the critical section constitutes the com-
munication work”[4].

The figure 1 shows that both DSMs speedups scale
with the number of nodes and TreadMarks outper-
forms Nautilus until 66.28%, specially for large num-
ber of nodes and for small N. With the increasement,
of N, this speedup difference between both DSMs de-
creases. With the increasement of N, the relation com-
munication /computation decreases, so the speedups of
both DSMs become similar. In Nautilus, diffs have to
be sent to its home nodes before the release message
is sent to the lock, while in TreadMarks, diffs are kept
locally. As a result, when summing up values, Nau-
tilus takes mor time for each processor to enter and
leave the critical section. Also, the lock/unlock imple-
mentation of Nautilus is under development, does not
presenting good performance nowadays.

5.2 Matmul

Looking at the figure 2, the speedups of both DSMs
can be seen under the input size N=1408.

Speedup of Matmul - N = 1408

“mat.1408x1408.TreadMarks" ——
“"mat.1408x1408.Nautilus" —+--

Speedup

4 5
Number of Nodes

figure 2: speedups of Matmul - 1408x1408

The first observation is that the speedups of both
DSMs increase with the number of nodes available for
N = 1408. Still looking at figure 2, Nautilus is about
10% to 20.16% faster than TreadMarks, the best ref-
erence of DSM area. The best speedup of Nautilus
happens due to the good data distribution (improving
the data locality: multiplicand and result matrices are
local giving a lower number of page faults and a lower
cold start up time to distribute shared data) for Mat-
mul benchmark and the lower overhead of the scope
consistency model. As there is no need to allocate
twins and to create diffs when a page is written in
its owner node, the avoidance of SIGIO signals and
the lower overhead of Nautilus multithreading helps
to improve the overall perfomance.

5.3 SOR

The SOR from Rice University solves Laplace partial
equations. For a number of iterations it has two bar-
riers each iteration and communication occurs across
boundary rows on a barrier. The communication does
not increase with the number of processors and the
relation communication/computation reduces as the
size of problem increases.

Looking at the figure 3, the speedups of both DSMs
can be seen under the iput size N=1408 and 10 itera-
tions.

Speedup of Sor - N = 1408

"sor.1408x1408.TreadMarks" +—
"sor.1408x1408 Nautilus" —+--

35

25

Speedup

15

1&
1 2

3 4 5 6 7 8
Number of Nodes

figure 3: speedups of SOR - 1408x1408

For 2 to 8 nodes Nautilus outperforms TreadMarks.
Looking at the figure 3, the speedup difference reaches
up to 33.56%. The excellent speedup of Nautilus hap-
pens because of the better data distribution adopted
by itself improving the matrix data locality (minimiz-
ing the number of messages through the net) and giv-
ing a lower cold start up time to distribute shared
data. The lazy release protocol of TreadMarks has
additional overhead of looking up and maintaining di-
rectory on a page fault.

Justifying the best speedups of Nautilus: with a
low number of processors, the speedup difference be-
tween Nautilus and TreadMarks is higher, because of
the higher cost of lazy release consistency to maintain
the directory on a page fault. As it was said in Mat-
mul evaluation, it is needless to alloc twins and diffs
when a page is written in its owner (node), which de-
creases the overhead and also the data distribution,
multithreading and the avoidance of SIGIO signals,
improve the Nautilus speedup.

6 Conclusion

In this paper a new DSM systems classification was
proposed based on their evolution, extending the clas-
sification initially proposed by [1].

This paper confronts the speedups of TreadMarks
and Nautilus, used at present and compared on the

same environment, with the same computers, network
and operating system. For the IS applicative, Nautilus
has worse speedup than TreadMarks because of the
lock /unlock implementation and diffs sending (to the
owner nodes) of Nautilus. For the applicative Matmul,
Nautilus is from 10% to 20% faster than TreadMarks
(N=1408). Finally, for the applicative SOR, Nautilus
is until 33.56% faster than TreadMarks (10 iterations
and N=1408).

As shown, Nautilus has good speedups, comparable
to other more well-known DSM, TreadMarks, surpass-
ing its speedup depending on the application. The use
of multithreading and the avoidance of SIGIO signals
also help to improve Nautilus speedup. Other data
distribution and other lock/unlock implementation are
undergoing study, in order to further improve Nautilus
speedup. The lazy release consistency model (Tread-
Marks) and the scope consistency model (Nautilus)
presented good speedups for the benchmarks evalu-
ated in this paper. It is intended to evaluate a Tread-
Marks version which does not have limitations as the
shared memory size and limited number of nodes.

References

[1] Carter J. B., Khandekar D., Kamb L., Dis-
tributed Shared Memory: Where We are and Where
we Should Headed, Computer Systems Laboratory,
University of Utah, 1995.

[2] Carter J. B., Efficient Distributed Shared Memory
Based on Multi-protocol Release Consistency, PHD
Thesis, Rice University, Houston, Texas, Septem-
ber, 1993.

[3] Keleher P. | Lazy Release Consistency for Dis-
tributed Shared Memory, PHD Thesis, University
of Rochester, Texas, Houston, January 1995.

[4] Hu W., Shi W., Tang Z., JIAJIA: An SVM System
Based on a new Cache Coherence Protocol, techni-
cal report no. 980001, Center of High Performance
Computing , Institute of Computing Technology,
Chinese Academy of Sciences, January, 1998.

[5] Marino M. D.; Campos G. L.; Evaluation of The
Traffic on the Nautilus DSM System Using Updates:
Ratio Among the Number of Messages and the Mean
Size of the Consistency Messages, XXIV CLEI'98,
Memories, October 1998, Vol. 1, pp. 325-333.

[6] Li K, Shared Virtual Memory on Loosely Coupled
Multiprocessors, PHD Thesis, Yale University, 1986.

[7] Stum M. , Zhou S. , Algorithms Implementing
Distributed Shared Memory, University of Toronto,
IEEE Computer v.23 , n.5 , pp.54-64 , May 1990.

[8] Keleher P. The Relative Importance of Concurrent
Writers and Weak Consistency Models, in Proced-
ings of the 16th International Conference on Dis-
tributed Computing Systems (ICDCS-16), pp.91-
98, May, 1996.

