A Preliminary Speedup Comparison Between Two Scope Consistency
DSM Systems: JIAJIA and Nautilus

Mario Donato Marino, Geraldo Lino de Campos*

Computer Engineering Department- Polytechnic
School of University of Sio Paulo

Abstract

Nautilus is a Multithreaded Distributed Shared Memo-
ry system based on scope consistency. The multithread
implementation disallows the use of SIGIO signals
in order to minimize the context switch of tradition-
al processes. This paper shows the speedups of some
benchmarks submitted to Nautilus. To have an accu-
rate and correct evaluation of Nautilus, it is compared
with other scope consistency DSM system: JIAJIA.
The benchmarks evaluated in this study are: IS (from
NAS), LU (kernel from SPLASH II), Matmul (matriz
multiplication) and SOR (from Rice University).

1 Introduction

In the last years the research on Distributed Shared
Memory (DSM)[8] area has great diffused, with the
development of a large number of consistency models
and DSM systems. Carter[1] has classified the DSM
evolution in two generations, the first one character-
ized by a big number of consistency messages and the
sequential consistency and the second one, by a big
reduction of the number of consistency messages and
by the adoption of a release consistency model.

The first generation can be exemplified with Ivy[6].
The second generation can be exemplified with
Munin|2][7], TreadMarks[3] and JIAJIA[4]. This pa-
per introduces a DSM system that belongs to the sec-
ond generation: Nautilus[5].

Commonly, DSM comparisons base on simulations,
rather than confronting execution results, for exam-
ple, two different DSM systems over a computer net-
work. The main goal is to evaluate Nautilus in an
accurate way, confronting it with other well known
DSM system, JIAJIA, executing them on the same
network, machines and operating systems, once they
are evaluated under the same conditions, the results
of this comparison would tend towards accurate com-
parisons.

*{mario, geraldo}@regulus.pcs.usp.br

There are a few previous papers [3] [4] [9] compar-
ing different DSM systems; however, most of then do
not evaluate DSM systems that belong to the second
generation. One of the contributions of this paper is
to show the speedups of two different scope DSM sys-
tems being executed on the same network of comput-
ers, because comparing executions is more accurate
and more correct than comparing simulations of the
DSMs.

In addition, as there are papers[3][9] that are using
networks with different operating systems, to equal-
ize the comparison, these two DSM systems are com-
pared on a PC computer network with a free operat-
ing system. So, with an ordinary hardware, operating
system, and DSMs system used throughout the aca-
demic community, it is guaranteed that the network,
the computers and the operating system are the same
to do a homogeneous and fair comparison.

For a meaningful evaluation of the Nautilus DSM
system, one of the most important DSM systems, that
have been used by several research groups in the sci-
entific community was chosen to be compared against
the Nautilus: JIAJIA. Previous and recent papers[4]
only compare JIAJTA with CVM][10] (lazy release con-
sistency) and TreadMarks with Munin[3], thus, as it
was said, one contribution of this paper is to compare
the speedups of two different scope consistency DSM
systems.

The comparison of Nautilus speedups with JIAJI-
A speedups is done by applying four different bench-
marks: IS (from NAS), LU (kernel from SPLASH II),
Matmul (matrix multiplication) and SOR (from Rice
University). Also, in order to evaluate the locality of
the benchmarks, two different input parameters sizes
are evaluated for each benchmark.

The environment of the comparison is a 8PC’s net-
work interconnected by a fast-ethernet shared media.
The operating system used in each PC is Linux (2.x).

2 JTIAJIA features

JIAJIA[4] is an important DSM system that uses s-
cope consistency, which can be interpreted as an in-
termediary consistency model between release consis-
tency and lazy release consistency or also be interpret-
ed as a kind of implementation of release consisten-



cy. According the scope consistency model, diffs' are
transmitted in each critical section to maintain the
consistency. So, JIAJTA uses the scope consistency
memory model, only sending consistency messages to
the owner of the pages and invalidating pages in the
acquire primitive.

Let’s summarize JIAJIA features: i) scope
consistency[4] home based, minimizing the number
of consistency messages through the net; ii) multiple
writer techniques; iii) data distribution possible to be
chosen by the user: the user can choose where the
shared data is located (over the network nodes); iv)
primitives compatible with TreadMarks; v) IBM SP2,
Sun Sparc, PCs; vi) AIX, Solaris, free Unix (Linux
2.x); vii) UDP protocols, minimizing network proto-
cols overhead.

The main objective of JTAJIA[4] is to be as simple
as possible to minimize overheads of diff creation and
diff storage and also minimize the number of consis-
tency messages through the net.

Concluding, the most interesting feature of JIAJI-
A is its simple ideas: home based, so the diffs are
transmitted only to the owner of the pages and not
to several nodes, minimizing the number of messages
through the net; the user knowing the behavior of his
program, chooses a data distribution which is more
appropriated, allowing better speedups.

3 Nautilus features

Nautilus is the first multithreaded DSM system im-
plemented on top of a free Unix platform that uses
the scope consistency model, because:

1. As of now, there are no multithreaded versions of
Treadmarks that can be executed on Linux 2.x,
but only a process-based version;

2. JIAJIA is a DSM system based on scope consis-
tency, but it is not implemented using threads;

3. CVMJ10] is a multithreaded DSM system, but
uses lazy release consistency and as of now, it
does not have a Linux based version.

Let’s summarize Nautilus features: i) scope consis-
tency (possibly interpreted as a kind of release consis-
tency implementation) only sending consistency mes-
sages to the owner of the pages and invalidating pages
in the acquire primitive ; ii) multiple writer tech-
niques; iii) multithreaded DSM: threads to minimize
the switch context; iv) no use of SIGIO signals(which
notice the arrival of a network message); v) minimiza-
tion of diffs creation; vi) primitives compatible with
TreadMarks, Quarks and JTAJIA; vii) network of PC-
s; viii) operating under Linux 2.x; ix) UDP protocols.

Ldiffs: codification of the modification suffered by a page
during a critical section

It is believed that the scope consistency model is a
different implementation of release consistency model
that can produce good speedups if well applied. So, it
is possible to view Nautilus as a multi-home and mul-
tithreaded DSM system based on release consistency.

To improve the speedup of the applications submit-
ted, Nautilus uses two techniques:

e multithreaded implementation;

e diffs of pages that were written by the owner are
not created.

The multithreaded implementation of Nautilus per-
mits:

e minimization of context switch;
e no use of SIGIO signals;

Nautilus is based in the following idea: the owner n-
odes of the pages do not need to send the diffs to other
nodes, according to the scope consistency model. So,
diffs of pages written by the owner are not created,
what it’s believed to be more efficient than the lazy
diff creation of TreadMarks.

Most of all DSM systems created until today imple-
mented on top of an Unix platform uses SIGIO signals
to activate a handler to take care of the arrival of mes-
sages which come from the network. Some examples
of DSMs that use the SIGIO signal are TreadMarks
and JIAJIA. The use of a multithreaded implementa-
tion permits to eliminate this overhead to take SIGIO
signals and activate its respective handler, in all ar-
rivals of messages. Avoiding the use of SIGIO signal
and the handler system call, both minimize the over-
heads of the system.

On the same way that TreadMarks and JTAJTA do,
also Nautilus is worried about network protocols. So,
it also uses UDP protocol to minimize overheads.

Nautilus also cares about compatibility of primi-
tives. Its primitives are simple and totally compati-
ble with TreadMarks, JTAJIA and Quarks; as a result
there is not any need of code rearrangements. One
example of this compatibility is that IS, LU and Mat-
mul are converted from JIAJIA and SOR from Tread-
Marks, basically changing the name of the primitives.

As TreadMarks and JTAJIA do, Nautilus also is
worried about synchronization messages. To minimize
the number of messages, the synchronization messages
would carry consistency information, minimizing the
emission of the last ones.

4 Experimental Evaluation

4.1 Environment

The evaluation programs of this study are executed
on top of Nautilus on the following network of PCs:



e nodes: K6 - 233 MHz (AMD), 64 MB of memory
and 2 GB IDE disk;

e interconnection: a hub and fast ethernet cards
(100 Mbits/s).

In order to measure the speedups, the network above
was completely isolated from any other external net-
works.

The operating system used was Linux Red Hat 5.0.

4.2 Evaluation programs
4.2.1 IS (from NAS)

“The IS problem from NAS Benchmarks ranks an un-
sorted sequence of keys using bucket sort. It is unique
in that floating point operations are not involved. The
parallel version of IS divides up the keys among pro-
cessors. There is a shared bucket for all processors
and each processor has a private bucket. First, each
processor counts its keys in the private array of buck-
ets. These values in private buckets are summed up
into the shared bucket in a critical section which is
protected by a lock. Finally, each processor reads the
sum and ranks their keys.”[4] The parameters used in
the evaluation are NUMREPS=10, MAXKEY =
27 and the following N (number of keys): N=22! and
N=222,

4.2.2 LU (blocked LU: kernel from SPLASH
IT)

“The LU kernel from SPLASH II factors a dense ma-
triz into the product of a lower triangular and upper
triangular matriz. The NxN matriz is divided into an
nzn array of bxb blocks (N = n*b) to exploit temporal
locality on submatriz elements. The matriz is factored
as an array of blocks, allowing blocks to be allocated
contiguously and entirely in the local memory of pro-
cessors that own then. ”[4]

The Ns used in the evaluation are N=1024 and
N=1792.

4.2.3 Matmul

“Matmul is a simple matriz multiplication program
with inner product algorithm. All arrays are allocat-
ed in shared memory. To achieve a good data local-
ity, the multiplier is transposed before multiplication.
This program requires no synchronization in the mul-
tiplication process, so only two barriers are used at the
beginning and the end of the program.”[4]

The matrix sizes used in this experiment are
1024x1024 and 1792x1792.

4.2.4 SOR (from Rice University)

“SOR from Rice University solves partial differential
equations (Laplace equations) with a Over-Relazation
method. There are two arrays, black and red array
allocated in shared memory. Fach element from red
array is computed as an aritmethic mean from black
array and each element from black array is computed
as an aritmethic mean from red array. Communica-
tion occurs across the boundary rows on a barrier”.[4]

The size of red and black matrix used are
1024x1024 and 1792x1792. The number of iter-
ations is 10 .

5 Result Analysis

Before presenting the results and their analysis, it
is necessary to emphasize that the execution time
(speedup) for number of nodes = 1 in all evaluated
benchmarks is obtained from the sequential version of
the benchmarks without any DSM primitive.

Only a few results were obtained with the current
version of JIAJIA, because several executions have
terminated abnormally (possibly an implementation
problem).

5.1 IS

The figures 1 and 2 shows the both DSMs speedups for
the IS benchmark. By observing the figure 1, Nautilus
does not presented results for 7 and 8 nodes, because
these executions finished abnormally.

The behavior of the curves showed in figures 1 and
2 is assimptotical and occurs because the computation
to communication ratio of IS increases linearly with
the problem size. ”In IS, most time-consuming com-
putation is for each processor to count its local part of
keys. Summing the counting results up in the critical
section constitutes the communication work”[4].

Looking at figure 1, for N=22!, JIAJIA outper-
forms Nautilus up to 46.27%. Looking at the figure
2, for N=222, JIAJIA outperforms Nautilus about
37.8%. Although the two DSM systems use the same
consistency models, there is a meaningful difference
between the speedups of both DSMs. This difference
occurs because, as Nautilus is a DSM which is in de-
velopment, its lock/unlock implementation does not
present, good performance actually.

Changing N from N=22'to N=222, this speedup
difference between both DSMs decreases from 46.27%
to 37.8%, because by increasing of N, the relation com-
munication/computation decreases, so the speedups
of both DSMs become more similar.

A final observation is that increasing N, the IS local-
ity increases, as it is possible to see by the increasing
of the speedups showed in the figures 1 and 2.



Speedup of IS - N = 2/21

"is.N21.JIAJIA" -—
"is.N21.Nautilus" —+--

45

35

Q
3
g 3
2]
25
2
15
1
1 2 3 4 5 6 7 8
Number of Nodes
figure 1: speedups of IS with N=22!
Speedup of IS - N = 2222
7
is.N22.JIAJIA" o—
"is.N22.Nautilus" —+--
6
5
A L
N e Y S S
g 4
2]
3
2
1
1 2 3 4 5 6 7 8
Number of Nodes
figure 2: speedups of IS with N=222

“LU is a kernel from SPLASH2 benchmarks that has
a rate computation/communication O(N°)/O(N?),
which increases with the problem size N. The nodes
frequently synchronize in each step of computation and
none of the phases are fully parallelized*[4].

Looking at the figures 3 and 4, the speedups of both
DSMs for LU benchmark can be seen for N=1024 and
N=1792. The first observation from these figures is
that the increasement of N improves the locality of
LU, when it is submitted to both DSMs, thus im-
proving its speedups.

With a number of nodes less than 3 nodes, the
speedups of both DSM systems are good and very
similar. With four nodes, JTAJIA is faster than Nau-
tilus up to 7.10%, for N=1024, and up to 6.50%, for

N=1792. For more than 4 nodes, Nautilus is faster
than JIAJIA up to 2.10%, for N=1024, and up to
6.60%, for N=1792. It can be also observed that the
speedup difference between the DSMs increases with
the increasement of N. This occurs because, although
JTAJIA and Nautilus use the same memory consisten-
cy model, the use of multithreading and the avoidance
of SIGIO signals makes Nautilus faster than JIAJTA.

Speedup of Lu - N = 1024
55

"11.1024x1024.JIAJIA" ~—
"lu.1024x1024.Nautilus" —+--

1=

45

35

Speedup

25

1 2 3 6 7 8

4 5
Number of Nodes

figure 3 : speedups of LU for N=1024

Speedup of LU - N = 1792

"16.1792x1792.JAJIA" ~—
55 "lu.1792x1792.Nautilus" -

=

Speedup
w
2

1 2 3 6 7 8

4 5
Number of Nodes

figure 4 : speedups of LU for N=1792

5.3 Matmul

Observing the figures 5 and 6, the speedups of both
DSMs for Matmul benchmark can be seen for N=1024
and N=1792. By analyzing these figures, Nautilus
is faster up to 32.30%, for N=1024, and up to
25.05%, for N=1792, than JIAJIA. Both DSMs ad-
dopt the same consistency memory model, but the



best speedup of Nautilus happens due to the good
data distribution (improving the data locality: the
matrix factors and the matrix result are local, i.e.,
the pages are modified by their owners, giving a lower
number of page faults and a lower cold start up time
to distribute shared data) for Matmul benchmark and
the lower overhead of the scope consistency model.

Speedup of Matmul - N = 1024

"mat.1024x1024.JIAJIA" -—
“mat.1024x1024.Nautilus" —+--

Speedup

4 5
Number of Nodes

figure 5: speedups of Matmul N=1024

Speedup of Matmul - N = 1792

"mat.1792x1792.JIAJIA" -—
"mat.1792x1792.Nautilus" —+--

Speedup
~

1 2 3 4 5
Number of Nodes

figure 6: speedups of Matmul N=1792

As there is no need to allocate twins and to create
diffs when a page is written in its owner node, the
avoidance of SIGIO signals and the lower overhead
of the threads used by Nautilus help to improve the
overall performance.

By increasing N from 1024 to 1792, it is believed
that the speedup difference decreases from 32.30% to
25.05% because of the increasement of the Matmul lo-
cality for JTAJIA is bigger than its increasement under
Nautilus.

5.4 SOR

The SOR benchmark from Rice University solves
Laplace partial equations. For a number of iterations
it has two barriers each iteration and communication
occurs across boundary rows on a barrier. The com-
munication does not increase with the number of pro-
cessors and the relation communication/computation
reduces as the size of problem increases.

Speedup of Sor - N = 1024

35

"s07.1024x1024.JIAJIA" ~—
"s0r.1024x1024.Nautilus"_=+-="

25

Speedup

05

4 5
Number of Nodes

figure 7: speedups of SOR for N=1024

Speedup of Sor - N = 1792

"s0r.1792x1792.JAJIA" —— -~
“sor.1792x1792.Nautilus" —+-

35

25

Speedup

1 2 3 4 5 6 7 8
Number of Nodes

figure 8: speedups of SOR for N=1792

The speedups of JIAJIA are very unusual and only
too few to conclude about them. Therefore, any relat-
ed speedups for JTAJTA are not considered for SOR
analysis. The figures 7 and 8 shows the speedups of
Nautilus with N=1024 and N=1792. The first obser-
vation of these figures is that by changing N from 1024
to 1792, the speedup of SOR under Nautilus improves,
due to the increasing of the locality of this benchmark.

The excellent speedup of Nautilus happens because



of the better data distribution (good choice of the page
owners) addopted by itself improving the matrix data
locality (minimizing the number of messages through
the net) and giving a lower cold start up time to dis-
tribute shared data. Also the avoidance of SIGIO sig-
nals and the multithreading help to improve the SOR
speedup.

Concluding, as it was said in Matmul evaluation, it
is needless to alloc twins and diffs when a page is writ-
ten in its owner (node), which decreases the overhead
and also the data distribution (good choice of the page
owners), multithreading and the avoidance of SIGIO
signals, which improve the Nautilus speedup.

6 Conclusion

This paper confronts the speedups of two scope con-
sistency DSM systems JIAJIA and Nautilus, used at
present and compared on the same environment, with
the same computers, network and operating system.

It was possible to notice the behavior of several d-
ifferent benchmarks which have several different fea-
tures under two DSMs, with their own aspects and
implementations.

The scope consistency model addopted by JIAJTA
and Nautilus presented good speedups for all bench-
marks evaluated in this paper.

Summarizing the results for this experiment, for the
IS benchmark, JTAJIA is faster than Nautilus. For the
LU, Matmul and SOR Nautilus is faster than JTAJIA.

For the IS applicative, JIAJIA is up to 46.27%
faster than Nautilus, for N=1024, and up to 37.80%,
for N=1792. For the LU applicative, Nautilus has the
best speedup, until 6.60% faster than JIAJIA. For the
Matmul applicative, Nautilus has the best speedup,
reaching up to 32.30% more speedup than JTAJIA,
for N=1024, and up to 25.05%, for N=1792. For the
SOR applicative, Nautilus also has a good speedup,
since JTAJTA has very unusual speedups.

As it was shown, Nautilus has good speedups, com-
parable to other well-known DSM, JTAJTA, surpassing
it depending on the application. The use of multi-
threading, the avoidance of SIGIO signals and a good
data distribution (good choice of the page owners) al-
so help to improve Nautilus speedup. The lock/unlock
implementation of Nautilus is under development in
order to improve Nautilus speedup for, for example,
IS benchmark. Also, other data distribution are un-
dergoing study, in order to further improvement of
Nautilus speedup.

Since only a few results were obtained with the cur-
rent version of JIAJIA, it will be possible to compare
the speedups of an improved version of this DSM with
other DSMs, for example, TreadMarks and Nautilus.

References

[1] Carter J. B., Khandekar D., Kamb L., Distribut-
ed Shared Memory: Where We are and Where we
Should Headed, Computer Systems Laboratory, U-
niversity of Utah, 1995.

[2] Carter J. B., Efficient Distributed Shared Memory
Based on Multi-protocol Release Consistency, PHD
Thesis, Rice University, Houston, Texas, Septem-
ber, 1993.

[3] Keleher P. , Lazy Release Consistency for Dis-
tributed Shared Memory, PHD Thesis, University
of Rochester, Texas, Houston, January 1995.

[4] Hu W., Shi W., Tang Z., JIAJIA: An SVM System
Based on a new Cache Coherence Protocol, techni-
cal report no. 980001, Center of High Performance
Computing , Institute of Computing Technology,
Chinese Academy of Sciences, January, 1998.

[5] Marino M. D.; Campos G. L.; FEwvaluation of
The Traffic on the Nautilus DSM System Using
Updates: Ratio Among the Number of Messages
and the Mean Size of the Consistency Messages,
XXIV Latin American Conference of Informatic-
s (CLET’98), Memories, October 1998, Vol. 1, pp.
325-333.

[6] Li K, Shared Virtual Memory on Loosely Coupled
Multiprocessors, PHD Thesis, Yale University, 1986.

[7] Swanson M., Stoller L., Carter J., Making Dis-
tributed Shared Memory Simple, Yet Efficient,
Computer Systems Laboratory, University of Utah,
technical report , 1998.

[8] Stum M. , Zhou S. , Algorithms Implementing
Distributed Shared Memory, University of Toronto,
IEEE Computer v.23 , n.5 , pp.54-64 , May 1990.

[9] Bershad B. N. , Zekauskas M. J. , SawDon W. A.,
The Midway Distributed Shared Memory System,
COMPCOM 1993.

[10] Keleher P., The Relative Importance of Concur-
rent Writers and Weak Consistency Models, in Pro-
ceedings of the 16th International Conference on
Distributed Computing Systems (ICDCS-16), pp.
91-98, May 1996.



