A DSM Speedup Comparison: TreadMarks, JIAJIA
and Nautilus

Mario Donato Marino *

Geraldo Lino de Campos

Computer Engineering Department - PCS
University of Sao Paulo
Sao Paulo, SP, Brazil

Abstract: Nautilus is o Multithreaded Dis-
tributed Shared Memory system based on scope
consistency. Its multithread implementation dis-
allows the use of SIGIO signals in order to mini-
mize the context switch of traditional processes.
This paper shows the speedups of some bench-
marks submitted to Nautilus, being it compared
with two other DSMs: TreadMarks and JIAJIA.
The benchmarks evaluated in this study are: LU
(kernel from SPLASH II) and SOR (from Rice
University).

Keywords: distributed shared memory, DSM

1 Introduction

In the last 6 years the research on Dis-
tributed Shared Memory (DSM)[7] area has
great diffused, with the development of a
large number of consistency models and
DSM systems. [1] has classified the DSM
evolution in two generations, the first one
characterized by a big number of consis-
tency messages and the sequential consis-
tency; the second one, by a big reduction
of the number of consistency messages and
by the adoption of a release consistency
model. One can exemplify the first genera-
tion with the Ivy[6] and the second generation
with Munin|2|, Quarks[l|, TreadMarks|3],
JIAJIA[4], CVM[9] and Nautilus[5], intro-
duced in this paper.

Commonly, DSM comparisons base on sim-
ulations, rather than confronting execution

*Supported by CNPq n0.142753/97-1 .

results; for example, two different DSM sys-
tems over a computer network. The main goal
is to evaluate Nautilus in an accurate way,
confronting it with others well known DSM
systems, TreadMarks and JIAJIA, executing
them on the same network, machines and op-
erating systems; once they are evaluated un-
der the same conditions, the results of this
comparison would tend towards accurate and
fair comparisons.

One of the contributions of this paper is
to show the speedups of three second genera-
tion DSM systems being executed on the same
network of computers, because comparing ex-
ecutions is more accurate and more correct
than comparing simulations of the DSMs. In
addition, as there are papers|3, 8] that are us-
ing networks with different operating systems,
to equalize the comparison, these three DSM
systems are compared on a PC computer net-
work with a free operating system. So, with
an ordinary hardware, operating system, and
DSMs system used throughout the academic
community, it is guaranteed that the network,
the computers and the operating system are
the same to do an homogeneous and fair com-
parison. For a meaningful evaluation of the
Nautilus DSM system, two of the most im-
portant DSM systems, that have been used by
several research groups in the scientific com-
munity were chosen to be compared against
the Nautilus. So, as a main contribution of
this paper TreadMarks, JIAJTA and Nautilus
speedups are compared for different bench-
marks.

The comparison of Nautilus speedups with

TreadMarks and JIAJTA speedups is done by
applying different benchmarks: LU (kernel
from SPLASH II) and SOR (from Rice Uni-
versity). The environment of the comparison
is a 8PC’s network ! interconnected by a fast-
ethernet shared media. The operating system
used is Linux (2.x).

2 TreadMarks

The consistency model used by TreadMarks
is the lazy release consistency|3|, so the prop-
agation of the medifications ocurred during
a critical section is delayed until the next
acquire. By using multiple writer protocols
and the lazy release consistency model, the
speedups of TreadMarks are very known, as a
consequence, it becomes one of the most used
DSM systems. Let’s summarize TreadMarks
features: i) lazy release consistency and its
variations|3|, minimizing the number of con-
sistency messages; ii) multiple writer tech-
niques of Munin|2[; iii) IBM SP2, Sun Sparc,
PCs; iv) Solaris, Linux 2.x; v) UDP protocols
to minimize network protocols overhead.

The speedups of TreadMarks made it the
main DSM used by the scientific community
as a reference of optimal speedups. Thus, it
makes sense to compare Nautilus, a new DSM
system, with TreadMarks, in order to have an
accurate evaluation of its performance. The
efficiency of TreadMarks is mainly derived
from its lazy release consistency model. The
major drawback of adopting this model is the
high need of memory to store the diffs? all
over the user’s application execution. So, the
sizes of the benchmarks used to evaluate the
speedups of the DSM system can be compro-
mised if there is not enough memory to ex-
ecute them or if the operating system does
swap.

!Supported by Finep/Recope.
2diffs: codification of the modification suffered by
a page during a critical section

3 JIAJIA

JIAJIA[4] is another important DSM sys-
tem, which uses scope consistency, that can
be interpreted as an intermediary consistency
model between release consistency and lazy
release consistency or also be interpreted as a
kind of implementation of release consistency.
According to this model, diffs are transmitted
in each critical section to maintain the consis-
tency. So, JIAJIA, which uses scope consis-
tency model, only sends consistency messages
to the owner of the pages, invalidating them
in the acquire primitive.

Let’s summarize JIAJTA features: i) scope
consistency[4] home based, minimizing the
number of consistency messages through the
net; ii) multiple writer techniques; iii) data
distribution possible to be chosen by the user:
the user can choose where the shared data is
located (over the network nodes); iv) prim-
itives compatible with TreadMarks; v) IBM
SP2, Sun Sparc, PCs; vi) AIX, Solaris, Linux
2.x; vii) UDP protocols, minimizing network
protocols overhead.

The main objective of JIAJIA[4] is to be as
simple as possible in order to minimize over-
heads of diff creation and diff storage and also
minimize the number of consistency messages
through the net. Concluding, the most inter-
esting feature of JIAJIA is its simple ideas:
home based, so the diffs are transmitted only
to the owner of the pages and not to sev-
eral nodes, minimizing the number of mes-
sages through the net; the user knowing the
behavior of his program, chooses a data dis-
tribution which is more apropriated, allowing
better speedups.

4 Nautilus

Nautilus is the first multithreaded DSM sys-
tem implemented on top of a free unix plat-
form that uses the scope consistency model,
because: 1) As of now, there are no multi-
threaded versions of Treadmarks that can be
executed on Linux 2.x, but only a process-
based version; 2) JIAJIA is a DSM system
based on scope consistency, but it is not im-

plemented using threads; 3) CVM][9] is a mul-
tithreaded DSM system, but uses lazy release
consistency and as of now, it does not have a
linux based version.

Let’s summarize Nautilus features: i) scope
consistency (possibly interpreted as a kind
of release consistency implementation) only
sending consistency messages to the page
owners and invalidating pages in the acquire
primitive; ii) multiple writer techniques; iii)
multithreaded DSM: threads to minimize the
switch context; iv) no use of SIGIO sig-
nals(which notice the arrival of a network
message); v) minimization of diffs creation;
vi) primitives compatible with TreadMarks,
Quarks and JIAJIA; vii) network of PCs; viii)
operating under Linux 2.x; ix) UDP proto-
cols.

To improve the speedup of the applications
submitted, Nautilus introduces two news: i)
multithreaded implementation; ii) lower over-
head of receiving messages when they ar-
rive. The multithreaded implementation of
Nautilus permits: i) minimization of context
switch; ii) no use of SIGIO signals. Nautilus is
based in the following idea: the owner nodes
of the pages do not need to send the diffs to
other nodes, according to the scope consis-
tency model. So, diffs of pages written by the
owner are not created, what it’s believed to
be more efficient than the lazy diff creation
of TreadMarks. The major part of all DSM
systems created until today implemented on
top of an Unix platform uses SIGIO signals to
activate a handler to take care of the arrival
of messages which come from the network.
Some examples of DSMs that use the SIGIO
signal are TreadMarks and JIAJIA. The use
of a multithreaded implementation permits to
eliminate this overhead to take SIGIO signals
and activate its respective handler, in all ar-
rivals of messages. Avoiding the use of SIGIO
signal and the handler system call minimizes
the overheads of the system.

On the same way that TreadMarks and JI-
AJIA do, also Nautilus is worried about net-
work protocols. So, it also uses UDP pro-
tocol to minimize overheads. As TreadMarks
and JIAJIA do, Nautilus also is worried about

synchronization messages. To minimize the
number of messages, the synchronization mes-
sages would also carry a consistency informa-
tion.

5 Experimental Evaluation

The evaluation programs of this study are ex-
ecuted on top of Nautilus on the following net-
work of PCs: i) nodes: K6 - 233 MHz (AMD),
64 MB of memory and 2 GB IDE disk; ii) in-
terconnection: a hub and fast ethernet cards
(100 Mbits/s). The network above was com-
pletely isolated from any other external net-
works. The operating system used was Linux
Red Hat 5.0.

Due to the limitation of the TreadMarks
version used:

1) the applications were executed and the
speedups measured using Nautilus running on
up to 8 nodes;

2) bigger input sizes for both benchmarks
LU and SOR, were not possible to be evalu-
ated.

Only a few results were obtained with the
current JIAJIA version (possibly an imple-
mentation problem).

The evaluation programs are LU
(SPLASH-II) and SOR (from Rice Uni-
versity):

1)“The LU kernel from SPLASH II factors
a dense matriz into the product of a lower
triangular and upper triangular matriz. The
NzN matriz is divided into an nzn array of
bzb blocks (N = n*b) to exploit temporal lo-
cality on submatriz elements. The matriz is
factored as an array of blocks, allowing blocks
to be allocated contiguously and entirely in the
local memory of processors that own them.
”[4] The N used in the evaluation is N = 1792.

2) “SOR from Rice University solves par-
tial differential equations (Laplace equations)
with a Over-Relazation method. There are
two arrays, black and red array allocated in
shared memory. Each element from red array
18 computed as an aritmethic mean from black
array and each element from black array is
computed as an aritmethic mean from red ar-
ray. Communication occurs across the bound-

ary rows on a barrier”.|4] The sizes of red and
black matrix used are 1792. The number of
iterations is 10 .

Speedup of LU - N = 1792

"lu.1792x1792.TreadMarks" —~—-~
I ,1792)(1792?5 AJIA" -~

o
o

U1 792x1 792N autlus® e+

Speedup
w
2

1 2 3 6 7

4 5
Number of Nodes

Figure 1: speedup of SOR(1792)

Speedup of Sor - N = 1792

4 T

"s0.1792x1792.JIAJIA" ="
"sor.1792x1792. TreadMarks"- ~+--

”sor,l792x1792,N%utilus“ 8]

Speedup
~

S E—

s

1 2 3 6 7

4 5
Number of Nodes

Figure 2: speedup of LU (N=1792)

5.1 LU - Result Analysis

“LU is a kernel from SPLASH2 benchmarks
that has a rate computation/communication
O(N?)/O(N?), which increases with the prob-
lem size N. The nodes frequently synchronize
i each step of computation and none of the
phases are fully parallelized “.[4]

The figure 1 shows good LU speedups for
the three DSMs. With a number of nodes less
than 3 nodes, the speedups of the three DSM

8

systems are very similar. Nautilus is faster
than TreadMarks and JIAJIA, except for 4
and 5 nodes, when JIAJIA is 6.50% faster
than the others. Percentually, Nautilus out-
performs TreadMarks about 3% and Tread-
Marks outperforms JIAJIA around 5.67%.
The best speedup of Nautilus occurs because
with this N value, due to lazy release con-
sistency model adopted by TreadMarks, too
much diffs are stored causing the swapping of
the operating system. And, although JIAJTA
and Nautilus use the same memory consis-
tency model, the use of multithreading and
the avoidance of SIGIO signals makes Nau-
tilus faster than JIAJTA.

5.2 SOR - Result Analysis

The SOR (Rice University) solves Laplace
partial equations. For a number of iterations,
it has two barriers for each iteration, and com-
munication occurs across boundary rows on
a barrier. The communication does not in-
crease with the number of processors and the
relation communication /computation reduces
in the same proportion as the size of problem
increases.

The figure 2 shows good speedups for
TreadMarks and Nautilus. The speedups of
JIAJIA are very unusual. Therefore, any re-
lated speedups are not considered for SOR
analysis. For 2 to 8 nodes Nautilus outper-
forms TreadMarks. In terms of percentage,
the speedup difference reaches up to 25.23%.
Justifying the best speedups of Nautilus and
the speedup difference compared to Tread-
Marks: with a low number of processors,
the speedup difference between Nautilus and
TreadMarks is higher, because of the higher
cost of lazy release consistency to maintain
the directory on a page fault. It is needless
to alloc twins and diffs when a page is writ-
ten in its owner (node), which decreases the
overhead, and also the data distribution, mul-
tithreading and the avoidance of SIGIO sig-
nals, improve the Nautilus speedup.

6 Conclusion

This paper confronts the speedups of Tread-
Marks, JTAJIA and Nautilus, used at present
and compared on the same environment, with
the same computers, network and operating
system. It was possible to notice the behav-
ior of different benchmarks which have several
features under three different DSMs and their
respectives consistency memory models. For
all the applicatives tested in this experiment,
JIAJIA has the worse speedups. For all the
applicatives Nautilus has the best speedups.
For LU applicative, Nautilus is up to 5.67%
faster than TreadMarks. For the SOR ap-
plicative, is 25.23% faster than TreadMarks.
As shown, Nautilus has good speedups, com-
parable to other well-known DSMs, surpass-
ing some of them depending on the applica-
tion. The use of multithreading, good data
distribution (choice of the page owners, mini-
mizing the diffs sending) and the avoidance of
SIGIO signals also help to improve Nautilus
speedup.

The lazy release consistency model (Tread-
Marks) and the scope consistency model (JI-
AJIA and Nautilus) presented good speedups
for the benchmarks evaluated in this paper.
Depending on the size of the input parameters
and the application evaluated, it was possible
to verify how the application performs under
the different DSMs and how the consistency
models used by these DSMs influence their
speedups.

Since only a few results were obtained with
the current version of JITAJIA, it will be
possible to compare the speedups of an im-
proved version of this DSM with TreadMarks
and Nautilus. And if the computers’ mem-
ory had been reduced, very probably Tread-
Marks would have presented worst results in
all benchmarks, because of its lazy release
consistency model and its need to store the
diffs.

References

[1] Carter J. B., Khandekar D., Kamb L.,
Distributed Shared Memory: Where We are

and Where we Should Headed, Computer
Systems Laboratory, University of Utah,
1995.

[2] Carter J. B., Efficient Distributed Shared
Memory Based on Multi-protocol Release
Consistency, PHD Thesis, Rice University,
Houston, Texas, September, 1993.

[3] Keleher P. | Lazy Release Consistency for
Distributed Shared Memory, PHD Thesis,
University of Rochester, Texas, Houston,
January 1995.

[4] Hu W., Shi W., Tang Z., JIAJIA: An
SVM System Based on a new Cache Coher-
ence Protocol, technical report no. 980001,
Center of High Performance Computing |,
Institute of Computing Technology, Chi-
nese Academy of Sciences, January, 1998.

[5] Marino M. D.; Campos G. L.; Evaluation
of The Traffic on the Nautilus DSM System
Using Updates: Ratio Among the Num-
ber of Messages and the Mean Size of the
Consistency Messages, XXIV Latin Amer-
ican Conference of Informatics (CLEI'98),
Memories, October 1998, Vol. 1, pp. 325-
333.

[6] Li K, Shared Virtual Memory on Loosely
Coupled Multiprocessors, PHD Thesis, Yale
University, 1986.

[7] Stum M. , Zhou S. , Algorithms Imple-
menting Distributed Shared Memory, Uni-
versity of Toronto, IEEE Computer v.23 |
n.5 , pp.54-64 , May 1990.

[8] Bershad B. N., Zekauskas M. J. , SawDon
W. A. , The Midway Distributed Shared
Memory System , COMPCOM 1993.

[9] Keleher P., The Relative Importance of
Concurrent Writers and Weak Consistency
Models, in Proceedings of the 16th Interna-
tional Conference on Distributed Comput-
ing Systems (ICDCS-16), pp. 91-98, May
1996.

