
0ROGRAMMING�THE�!SYNCHRONOUS�0OLYCYCLIC�!RCHITECTURE

Geraldo Lino de Campos1 and Demi Getschko2

1 Escola Politécnica da Universidade de São Paulo

e-mail: glcampos@pec001.usp.ansp.br

2 Fundação de Amparo à Pesquisa do Estado de São Paulo

e-mail: demi@fpsp.fapesp.br

!BSTRACT�The Asynchronous Polycyclic Architecture (APA) is a new processor

design for numerically intensive applications. One of the main features is the ability to

efficiently execute loops with recurrences and conditionals. This is achieved by the use of a

special iteration register, an interactive counterpart of the stack pointer for recursive operations.

+EYWORDS� Asynchronous Polycyclic Architecture, programming, recurrences.

� —)NTRODUCTION�AND�MOTIVATION

Development of the Asynchronous Polycyclic Architecture (APA) concept was

spurred by the needs of Project Omicron, an academic research effort. The project’s main goal

is to design and build a supercomputer for numerical applications, with a real-world perform-

ance in the same range of the then current supercomputers. APA processors are expected to

provide better sustained performance in real-world problems than standard vector processors

with the same peak capacity.

Our proposed Asynchronous Polycyclic Architecture [2, 3] combines the basics of

the VLIW architecture [6] with the decoupled access/execute concept [8], and with extensions

for loop execution, for conditional execution of instructions, for fetching large amounts of data

and for an autonomous operation of groups of functional units, and eager execution for hiding

memory latency (in EAGER execution, a instruction is executed as soon as their operands are

available and there is a free unit to do the operation, even when it is not sure if the control flow

will warrant the need for the instruction; in�LAZY execution an instruction is executed only when

reached by the control flow).

Sections 2 describes the generic APA concept in more detail. Section 3 details the

polycyclic concept of the architecture. Section 4 provides a complete programming example.

Section 5 offers some concluding remarks

� — $ESCRIPTION�OF�THE�!0!

The Asynchronous Polycyclic Architecture resulted from a critical analysis of the

characteristics of the VLIW architecture. The detailed evolution leading to the APA can be

found in [2]; it will be only summarized here.

A VLIW processor is conceptually characterized by a single thread of execution, a

large number of data paths and functional units, with control planned at compile time, instruc-

tions providing enough bits to control the action of every functional unit directly and inde-

pendently in each cycle, operations that require a small and predictable number of cycles to

execute, and each operation can be pipelined, i. e., each functional unit can initiate a new

operation in each cycle.

On examining the conceptual characterization, it becomes clear that the rationale is

to have a large degree of parallelism and a simple, and therefore fast, control cycle. Closer

scrutiny of the conditions above shows that they are sufficient for the goal, but most are not

necessary, at least in the length stated.

First, the access/execute concept was introduced. The motivation was practical

considerations on memory access. General purpose architectures rely almost invariably on

caches to speed up execution, exploiting the locality of memory references. Although this is the

case with general computing loads, this assumption can be wildly wrong with numerically

intensive programs, since dealing with large arrays is incompatible with any realistically sized

cache. This conclusion is reported for quite different machines [1, 5, 7].

The APA solves the memory access problem by decoupling the process of memory

access. Two kinds of functional units are used: the first, called the ADDRESS�UNIT, generates and

sends the required addresses to the memory subsystem; the second, called the DATA�REFERENCE

UNIT, is responsible for reordering data words coming from memory and upon request sending

them to the other functional units.

Address units may operate in two modes: single address and multiple address. In

the single address mode, its role is only to receive an address calculated by an arithmetic unit

and to send it to the memory subsystem; in the multiple address mode, its role is to autono-

mously generate the values of a set of arithmetic progressions, until a specified number of

elements are generated; this mode is used for reference to (a set of) arrays. Once started, the

address unit can proceed asynchronously with the main flow of control.

The second step was extending this concept of asynchronous operations to the other

functional units, each with its own flow of control. Experience in programming such a machine

shows that it is unduly complicated. Very few situations require this full splitting of the

functional units. A hierarchical system is adequate for almost all situations: the functional units

can be divided into groups, composed of a certain number of arithmetic units, each capable of

forking the operation of address units.

Figure 1 shows the evolution from VLIW to APA

� — 0OLYCYCLIC�SUPPORT

Efficient execution of loops is obtained by use of a variant of polycyclic support

described in [4,7]. The programming technic will be explained for a specif instance of the

architecture, with the following characteristics:

• one pipelined ALU, able to perform fixed and floating operations with a latency

of 5 cycles, with forwarding registers, reducing the latency to 2 cycles for the

immediate use of a result;

• two memory access queues, one each for reads and writes;

• 32 general purpose registers, called STATIC�REGISTERS.

• 96�DYNAMIC�REGISTERS��The usage of these registers are described below.

��� 0RINCIPLE�OF�OPERATION

The dynamic registers�are divided into frames, each corresponding to the temporar-

ies needed for each iteration of a loop. The frame size is variable, and calculated by the

compiler; it must be large enough to hold all the temporaries needed during the execution of one

iteration of the loop. This is an efficient renaming mechanism that allows the simultaneous

Figure 1 - Evolution from VLIW to APA architecture

In this drawing, dotted lines represent flow of control, AL stands for Arithmetic

Logic Unit, and AU for Address unit.

In A, the traditional VLIW architecture. In B, evolution to the access/execute

architecture. In C, the introduction of groups. Experimental analysis of programs for this

architecture shows that each autonomous set may have its own copy of the register file, as

shown in D. Data is exchanged via an internal bus. Other essential features for making this

possible are not shown.

execution of several iterations of the same loop, hiding the ALUs latency. This is an iteractive

counterpart of the stack pointer for recursive constructs.

Each frame contains the values corresponding to one iteration; old frames contains

the values corresponding to older iterations. If an operation is initiated and latency would force

the introduction of delays, the code can initiate a new iteration, and continue the first iteration,

with values in an old frame, when executing a future iteration of the loop.

��� !UTOMATIC�PROLOGUE�AND�EPILOG

An important hardware feature is automatic prologue and epilog processing. When

the execution of a loop is initiated, only the operations which refer to the current frame are

executed; all the operation referring to older frames are bypassed. This phase is called prologue,

and assures that only meaningful operations are done.

After the loop is executed for the expected N iterations, it is repeated M more times

(this number is calculated by the compiler, and is the number of frames used by the loop). This

phase is called epilogue, and the hardware operates in a complementary fashion: in the mth

iteration of the epilogue, only the operations that refer to frames of age m or more are executed.

This frees the compiler from generating special prologue and epilog codes, and,

most important, allows it to generate code only for the general case, ignoring the special case

when the loop must be executed only a few times.

� — !�PROGRAMMING�EXAMPLE

For the examples, the following conventions will be used:

Static registers will be represented by Rn, where n is the number of the register;

dynamic register will be represented by Rn ↑ m, where n is the number of a register inside de

frame, and m is the frame number, where 0 corresponds to the current frame (iteration), 1

corresponds to the values in the previous iteration, and so on.

Instructions are of the three-address format. Opcodes are self-explanatory. The

source operands may be registers or the input queue, represented by Qi; the destination operand

is always a register, but optionally it can be sent to the output queue, represented by Qo, as well.

A flag, NEXT, indicates the end of the loop, and forces a branch to the loop’s first instruction.

Before entering the loop, it is neces-

sary to program the address units; although it is

quite straightforward, it will not be shown here

for space limitations. By the same reason, in-

itialization and termination code are not shown.

As a first example, we will consider

the well-known sum of products:

S = 0.0

DO 10 i = 1, N

10 S = S + A(K) * B(K)

The following register assignment is

adopted:

R1 ↑ - A(K) * B(K);

 R2 ↑ - B(K);

 R5 - S

Table 1 shows the corresponding

code. Version 1 is a direct compilation, without

using the polycyclic features; in version 2, the

NOPs following the last ADD are dropped, since

the requirement of 5 cycles for reusing R5 is

satisfied by the other instructions in the loop.

Version 3 uses the polycyclic fea-

ture; the ADD instruction is moved to one slot

previously occupied by a NOP, and uses as oper-

and the value of the previous iteration. As ex-

plained in the section on prologue/epilogue, the

hardware does not execute this operation on the

first iteration of the loop, and executes it one

time more during the epilogue, so the correct

number of instructions is executed.

MOV Qi, R2 ↑ 0

NOP

MUL Qi, R2 ↑ 0, R1 ↑ 0

NOP

ADD R5, R1 ↑ 0, R5

NOP

NOP

NOP

NOP

NOP, NEXT

Version 1

MOV Qi, R2 ↑ 0

NOP

MUL Qi, R2 ↑ 0, R1 ↑ 0

NOP

ADD R5, R1 ↑ 0, R5

NOP, NEXT

Version 2

MOV Qi, R2 ↑ 0

NOP

MUL Qi, R2 ↑ 0, R1 ↑ 0

ADD R5, R1 ↑ 1, R5

NOP, NEXT

Version 3

Table 1 - Code for sum of products.

In this example some NOPs are still

needed to allow for the latency of 5 clock cycles;

in more realistic loops, with more operations, all

slots are usually filled.

To show the possibility of using

loops with recurrences, lets consider the follow-

ing extension to the previous loop:

S = A(1) * B(1)

DO 10 i = 2, N

S = S + A(K) * B(K)

10 C(K) = C(k-1) + S

The following register assignment is

adopted:

R1 ↑ - A(K) * B(K);

 R2 ↑ - B(K);

 R3 ↑ - S

R4 ↑ - C(k)

Table 2 shows the corresponding

code. Version 1 is a direct compilation; version 2

removes the unnecessary NOPs.

Version 3 shows the polycyclic ver-

sion. Another NOP slot could be used for the

recurrent instruction, and each iteration still fits

in five clock cycles.

� — #ONCLUSIONS

The polycyclic aspect of the APA

offers a simple solution for the execution of

MOV Qi, R2 ↑ 0

NOP

MUL Qi, R2 ↑ 0, R1 ↑ 0

NOP

ADD R3 ↑ 1, R1 ↑ 0, R3 ↑ 0

NOP

ADD R4 ↑ 1, R3 ↑ 0, R4 ↑ 0 [Qo]

NOP

NOP

NOP

NOP

NOP, NEXT

Version 1

MOV Qi, R2 ↑ 0

NOP

MUL Qi, R2 ↑ 0, R1 ↑ 0

NOP

ADD R3 ↑ 1, R1 ↑ 0, R3 ↑ 0

NOP

ADD R4 ↑ 1, R3 ↑ 0, R4 ↑ 0 [Qo]

NOP, NEXT

Version 2

MOV Qi, R2 ↑ 0

NOP

MUL Qi, R2 ↑ 0, R1 ↑ 0

ADD R3 ↑ 1, R1 ↑ 0, R3 ↑ 0

ADD R4 ↑ 1, R3 ↑ 0,R4 ↑ 0, NEXT

Version 3

Table 2 - Code for the second
example.

loops. The increment in hardware is small, and has no impact on the cycle time.

Compared with others solutions, like software pipelining, the compiler can be

much simpler. This is particularly true when considering that the automatic prologue/epilog

generation allows the same code to be used even for loops of span 1, without any special

consideration.

� — "IBLIOGRAPHY

1. Abu-Sufah, W and Mahoney, A. D., "Vector Processing on the Alliant FX/8 Processor",

Proc. Int’l Conf. Parallel Processing, 559-563, 1986.

 2. Campos, G. L., "Asynchronous Polycyclic Architecture: an overview", Proc. of the 12th

Word Computer Congress, vol I- Algorithms, Software, Architecture, Madrid, Sept 1992.

3. Campos, G. L., "Asynchronous Polycyclic Architecture", Proc. of the 6th International

Conference on Parallel Processing", Lyon, Sept 1992.

4. Dehnert, J. C., Hsu, P. Y. T.., Bratt, J. P., "Overlapped Loop Support in the Cydra 5", 3rd

Int. Conf. on Architectural Support for Programming Languages and Operating Systems,

26-38, April 1989

5. Diede, T., et al. "The Titan Graphics Supercomputer Architecture", IEEE Computer 21

(9):13-30, September 1988.

6. Fisher, J. A. "Very Long Instruction Word Architectures and the ELI-512", IEEE Conf.

Proc. of the 10th Annual Int. Symp. on Comput. Architecture, 140-150, June 1983.

7. Rau, B. R., Yen, D. W. L. and Towle, R. A. "The Cydra 5 Departmental Supercomputer",

IEEE Computer 22 (1):12-35, February 1989.

8. Smith, J. E., "Decoupled Access/Execute Architecture Computer Architectures", ACM

Trans. Computer Systems, 2(4):298-308, Nov 1984.

